BIN-Data integration
Data Integration
(Integration of biological data; Identifier mapping; Entrez; UniProt; BioMart. ID mapping service and match() function.)
Abstract:
Data integration is a challenging problem. This unit discusses the issues and how the large databases solve this with NCBI's Entrez system and the EBI's UniProt Knoledeg Base and BioMart System. R coding exercises put some technical issues in practice.
Objectives:
|
Outcomes:
|
Deliverables:
Prerequisites:
This unit builds on material covered in the following prerequisite units:
Evaluation
Evaluation: NA
Contents
Task:
- Read the introductory notes on concepts and approaches to data integration in bioinformatics.
Task:
- Visit the UniProt ID mapping service, enter
NP_010227
into the identifier field, select options from RefSeq Protein to UniProtKB and click Go. - Confirm that this retrieved the right identifier.
- Also note that you could have searched with a list of IDs, and downloaded the results, e.g. for further processing in R.
Task:
- Open RStudio and load the
ABC-units
R project. If you have loaded it before, choose File → Recent projects → ABC-Units. If you have not loaded it before, follow the instructions in the RPR-Introduction unit. - Choose Tools → Version Control → Pull Branches to fetch the most recent version of the project from its GitHub repository with all changes and bug fixes included.
- Type
init()
if requested. - Open the file
BIN-Data_integration.R
and follow the instructions.
Note: take care that you understand all of the code in the script. Evaluation in this course is cumulative and you may be asked to explain any part of code.
Task:
The biomartr
bioconductor package is a second-generation R interface to BioMart that extends the biomaRt
package. It has a good quick start introduction to "Functional Annotation".
- Navigate to https://cran.r-project.org/web/packages/biomartr/vignettes/Functional_Annotation.html
- Work through the tutorial.
Further reading, links and resources
Xie & Ahn (2010) Statistical methods for integrating multiple types of high-throughput data. Methods Mol Biol 620:511-29. (pmid: 20652519) |
Notes
About ...
Author:
- Boris Steipe <boris.steipe@utoronto.ca>
Created:
- 2017-08-05
Modified:
- 2020-09-24
Version:
- 1.1
Version history:
- 1.1 2020 Maintenance
- 1.0 First live version.
- 0.1 First stub
This copyrighted material is licensed under a Creative Commons Attribution 4.0 International License. Follow the link to learn more.