Difference between revisions of "BIN-SX-Analysis"

From "A B C"
Jump to navigation Jump to search
m (Created page with "<div id="BIO"> <div class="b1"> Analysis of Protein Structure </div> {{Vspace}} <div class="keywords"> <b>Keywords:</b>  Analysis of protein structures </div> ...")
 
m
 
Line 27: Line 27:
 
<div id="ABC-unit-framework">
 
<div id="ABC-unit-framework">
 
== Abstract ==
 
== Abstract ==
 +
<section begin=abstract />
 
<!-- included from "../components/BIN-SX-Analysis.components.wtxt", section: "abstract" -->
 
<!-- included from "../components/BIN-SX-Analysis.components.wtxt", section: "abstract" -->
 
...
 
...
 +
<section end=abstract />
  
 
{{Vspace}}
 
{{Vspace}}
Line 62: Line 64:
 
*<b>Time management</b>: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.
 
*<b>Time management</b>: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.
 
<!-- included from "ABC-unit_components.wtxt", section: "deliverables-journal" -->
 
<!-- included from "ABC-unit_components.wtxt", section: "deliverables-journal" -->
*<b>Journal</b>: Document your progress in your [[FND-Journal|course journal]].
+
*<b>Journal</b>: Document your progress in your [[FND-Journal|Course Journal]]. Some tasks may ask you to include specific items in your journal. Don't overlook these.
 
<!-- included from "ABC-unit_components.wtxt", section: "deliverables-insights" -->
 
<!-- included from "ABC-unit_components.wtxt", section: "deliverables-insights" -->
*<b>Insights</b>: If you find something particularly noteworthy about this unit, make a note in your [[ABC-Insights|insights! page]].
+
*<b>Insights</b>: If you find something particularly noteworthy about this unit, make a note in your [[ABC-Insights|'''insights!''' page]].
  
 
{{Vspace}}
 
{{Vspace}}

Latest revision as of 17:32, 7 September 2017

Analysis of Protein Structure


 

Keywords:  Analysis of protein structures


 



 


Caution!

This unit is under development. There is some contents here but it is incomplete and/or may change significantly: links may lead to nowhere, the contents is likely going to be rearranged, and objectives, deliverables etc. may be incomplete or missing. Do not work with this material until it is updated to "live" status.


 


Abstract

...


 


This unit ...

Prerequisites

You need to complete the following units before beginning this one:


 


Objectives

...


 


Outcomes

...


 


Deliverables

  • Time management: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.
  • Journal: Document your progress in your Course Journal. Some tasks may ask you to include specific items in your journal. Don't overlook these.
  • Insights: If you find something particularly noteworthy about this unit, make a note in your insights! page.


 


Evaluation

Evaluation: NA

This unit is not evaluated for course marks.


 


Contents

Interpretation

Analysis of the ligand binding site:

  • Comparison with seq2logo
Chu et al. (2009) ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors. Nucleic Acids Res 37:W396-401. (pmid: 19483101)

PubMed ] [ DOI ] This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein-DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are essential for correct gene regulation. In this respect, ProteDNA is distinctive since it has been designed to identify sequence-specific binding residues. In order to accommodate users with different application needs, ProteDNA has been designed to operate under two modes, namely, the high-precision mode and the balanced mode. According to the experiments reported in this article, under the high-precision mode, ProteDNA has been able to deliver precision of 82.3%, specificity of 99.3%, sensitivity of 49.8% and accuracy of 96.5%. Meanwhile, under the balanced mode, ProteDNA has been able to deliver precision of 60.8%, specificity of 97.6%, sensitivity of 60.7% and accuracy of 95.4%. ProteDNA is available at the following websites: http://protedna.csbb.ntu.edu.tw/, http://protedna.csie.ntu.edu.tw/, http://bio222.esoe.ntu.edu.tw/ProteDNA/.

Brandt et al. (2010) Multi-Harmony: detecting functional specificity from sequence alignment. Nucleic Acids Res 38:W35-40. (pmid: 20525785)

PubMed ] [ DOI ] Many protein families contain sub-families with functional specialization, such as binding different ligands or being involved in different protein-protein interactions. A small number of amino acids generally determine functional specificity. The identification of these residues can aid the understanding of protein function and help finding targets for experimental analysis. Here, we present multi-Harmony, an interactive web sever for detecting sub-type-specific sites in proteins starting from a multiple sequence alignment. Combining our Sequence Harmony (SH) and multi-Relief (mR) methods in one web server allows simultaneous analysis and comparison of specificity residues; furthermore, both methods have been significantly improved and extended. SH has been extended to cope with more than two sub-groups. mR has been changed from a sampling implementation to a deterministic one, making it more consistent and user friendly. For both methods Z-scores are reported. The multi-Harmony web server produces a dynamic output page, which includes interactive connections to the Jalview and Jmol applets, thereby allowing interactive analysis of the results. Multi-Harmony is available at http://www.ibi.vu.nl/ programs/shmrwww.



 


Further reading, links and resources

 


Notes


 


Self-evaluation

 



 




 

If in doubt, ask! If anything about this learning unit is not clear to you, do not proceed blindly but ask for clarification. Post your question on the course mailing list: others are likely to have similar problems. Or send an email to your instructor.



 

About ...
 
Author:

Boris Steipe <boris.steipe@utoronto.ca>

Created:

2017-08-05

Modified:

2017-08-05

Version:

0.1

Version history:

  • 0.1 First stub

CreativeCommonsBy.png This copyrighted material is licensed under a Creative Commons Attribution 4.0 International License. Follow the link to learn more.