Difference between revisions of "Genome"
Jump to navigation
Jump to search
m (→Contents) |
|||
Line 29: | Line 29: | ||
**{{WP|Genome Reference Consortium}} | **{{WP|Genome Reference Consortium}} | ||
**{{WP|1000 Genomes Project}} | **{{WP|1000 Genomes Project}} | ||
+ | **$1000 Genome: [http://www.lifetechnologies.com/ Life technologies'] Ion Torrent and [http://www.illumina.com/ Illumina's] HiSeq | ||
* Genome annotation | * Genome annotation | ||
* Genome browsers working with genome-scale information | * Genome browsers working with genome-scale information |
Revision as of 16:32, 9 February 2012
Genome
This page is a placeholder, or under current development; it is here principally to establish the logical framework of the site. The material on this page is correct, but incomplete.
Genome sequencing brought the first complete description of the cell's components to light. It is a topic of ever increasing prominence with the advent of technologies that can sequence entire eukaryotic genomes in less than a week at a cost of less than a thousand dollars. Besides assembly and maintenance of such large amounts of data, data interpretation via automated annotation algorithms, and data access through tools such as genome browsers are active topics.
Introductory reading
Bakke et al. (2009) Evaluation of three automated genome annotations for Halorhabdus utahensis. PLoS ONE 4:e6291. (pmid: 19617911) |
Petty (2010) Genome annotation: man versus machine. Nat Rev Microbiol 8:762. (pmid: 20948549) |
Malone & Oliver (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34. (pmid: 21627854) |
Contents
- Genome sequencing and assembly
- Human - current: GRCh37 (2009). With the next iteration, genome coordinates will change (again)
- Reference genome
- Genome Reference Consortium
- 1000 Genomes Project
- $1000 Genome: Life technologies' Ion Torrent and Illumina's HiSeq
- Genome annotation
- Genome browsers working with genome-scale information
- Programmatic access to genome sequences
Exercises
Pevsner (2009) Analysis of genomic DNA with the UCSC genome browser. Methods Mol Biol 537:277-301. (pmid: 19378150) |
Further reading and resources
Harbison et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99-104. (pmid: 15343339) |
Karolchik et al. (2007) Comparative genomic analysis using the UCSC genome browser. Methods Mol Biol 395:17-34. (pmid: 17993665) |
Pop & Salzberg (2008) Bioinformatics challenges of new sequencing technology. Trends Genet 24:142-9. (pmid: 18262676) |
Yang et al. (2010) Annotation confidence score for genome annotation: a genome comparison approach. Bioinformatics 26:22-9. (pmid: 19855104) |
Picardi & Pesole (2010) Computational methods for ab initio and comparative gene finding. Methods Mol Biol 609:269-84. (pmid: 20221925) |
Kislyuk et al. (2010) A computational genomics pipeline for prokaryotic sequencing projects. Bioinformatics 26:1819-26. (pmid: 20519285) |
Montgomery et al. (2010) Annotating the regulatory genome. Methods Mol Biol 674:313-49. (pmid: 20827601) |
Nagarajan & Pop (2010) Sequencing and genome assembly using next-generation technologies. Methods Mol Biol 673:1-17. (pmid: 20835789) |
Han et al. (2011) SnapShot: High-throughput sequencing applications. Cell 146:1044, 1044.e1-2. (pmid: 21925324) |
Kenny & Bustamante (2011) SnapShot: Human biomedical genomics. Cell 147:248-248.e1. (pmid: 21962520) |
Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609-15. (pmid: 21720365) |
Tran et al. (2012) Cancer genomics: technology, discovery, and translation. J Clin Oncol 30:647-60. (pmid: 22271477) |