Genome
Jump to navigation
Jump to search
Genome
This page is a placeholder, or under current development; it is here principally to establish the logical framework of the site. The material on this page is correct, but incomplete.
Genome sequencing brought the first complete description of the cell's components to light. It is a topic of ever increasing prominence with the advent of technologies that can sequence entire eukaryotic genomes in less than a week at a cost of less than a thousand dollars. Besides assembly and maintenance of such large amounts of data, data interpretation via automated annotation algorithms, and data access through tools such as genome browsers are active topics.
Introductory reading
Abecasis et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56-65. (pmid: 23128226) |
Contents
- Genome sequencing and assembly
- Human - current: GRCh37 (2009). With the next iteration, genome coordinates will change (again)
- Reference genome
- Genome Reference Consortium
- 1000 Genomes Project
- $1000 Genome: Life technologies' Ion Torrent and Illumina's HiSeq
- Genome annotation
- Genome browsers working with genome-scale information
- Programmatic access to genome sequences
Exercises
Pevsner (2009) Analysis of genomic DNA with the UCSC genome browser. Methods Mol Biol 537:277-301. (pmid: 19378150) |
Further reading and resources
Powell et al. (2014) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42:D231-9. (pmid: 24297252) |
Amemiya et al. (2013) The African coelacanth genome provides insights into tetrapod evolution. Nature 496:311-6. (pmid: 23598338) |
Collisson et al. (2012) What are we learning from the cancer genome?. Nat Rev Clin Oncol 9:621-30. (pmid: 22965149) |
Wang et al. (2013) A brief introduction to web-based genome browsers. Brief Bioinformatics 14:131-43. (pmid: 22764121) |
Tran et al. (2012) Cancer genomics: technology, discovery, and translation. J Clin Oncol 30:647-60. (pmid: 22271477) |
Kenny & Bustamante (2011) SnapShot: Human biomedical genomics. Cell 147:248-248.e1. (pmid: 21962520) |
Han et al. (2011) SnapShot: High-throughput sequencing applications. Cell 146:1044, 1044.e1-2. (pmid: 21925324) |
Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609-15. (pmid: 21720365) |
Malone & Oliver (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34. (pmid: 21627854) |
Lander (2011) Initial impact of the sequencing of the human genome. Nature 470:187-97. (pmid: 21307931) |
Petty (2010) Genome annotation: man versus machine. Nat Rev Microbiol 8:762. (pmid: 20948549) |
Nagarajan & Pop (2010) Sequencing and genome assembly using next-generation technologies. Methods Mol Biol 673:1-17. (pmid: 20835789) |
Montgomery et al. (2010) Annotating the regulatory genome. Methods Mol Biol 674:313-49. (pmid: 20827601) |
Kislyuk et al. (2010) A computational genomics pipeline for prokaryotic sequencing projects. Bioinformatics 26:1819-26. (pmid: 20519285) |
Picardi & Pesole (2010) Computational methods for ab initio and comparative gene finding. Methods Mol Biol 609:269-84. (pmid: 20221925) |
Yang et al. (2010) Annotation confidence score for genome annotation: a genome comparison approach. Bioinformatics 26:22-9. (pmid: 19855104) |
Bakke et al. (2009) Evaluation of three automated genome annotations for Halorhabdus utahensis. PLoS ONE 4:e6291. (pmid: 19617911) |
Pop & Salzberg (2008) Bioinformatics challenges of new sequencing technology. Trends Genet 24:142-9. (pmid: 18262676) |
Karolchik et al. (2007) Comparative genomic analysis using the UCSC genome browser. Methods Mol Biol 395:17-34. (pmid: 17993665) |
Harbison et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99-104. (pmid: 15343339) |
- Sites
Personal Genome Project Canada Node @ SickKids
See also:
See also:
Church (2013) Improving genome understanding. Nature 502:143. (pmid: 24108012) |