Difference between revisions of "BIN-SX-Domains"
m |
m |
||
Line 40: | Line 40: | ||
<!-- included from "ABC-unit_components.wtxt", section: "notes-prerequisites" --> | <!-- included from "ABC-unit_components.wtxt", section: "notes-prerequisites" --> | ||
You need to complete the following units before beginning this one: | You need to complete the following units before beginning this one: | ||
− | *[[BIN-SX-Chimera]] | + | *[[BIN-SX-Chimera|BIN-SX-Chimera (UCSF Chimera: Structure Visualization and Analysis)]] |
{{Vspace}} | {{Vspace}} | ||
Line 84: | Line 84: | ||
== Contents == | == Contents == | ||
<!-- included from "../components/BIN-SX-Domains.components.wtxt", section: "contents" --> | <!-- included from "../components/BIN-SX-Domains.components.wtxt", section: "contents" --> | ||
+ | |||
{{Task|1= | {{Task|1= | ||
Line 92: | Line 93: | ||
{{Vspace}} | {{Vspace}} | ||
+ | ===CATH=== | ||
+ | |||
+ | |||
+ | {{#pmid: 27899584}} | ||
+ | |||
+ | {{Vspace}} | ||
===APSES domains in Chimera (from A4)=== | ===APSES domains in Chimera (from A4)=== |
Revision as of 00:42, 8 October 2017
Structure domains
Keywords: Structural domains, domain databases - CATH, SCOP, cDART
Contents
This unit is under development. There is some contents here but it is incomplete and/or may change significantly: links may lead to nowhere, the contents is likely going to be rearranged, and objectives, deliverables etc. may be incomplete or missing. Do not work with this material until it is updated to "live" status.
Abstract
...
This unit ...
Prerequisites
You need to complete the following units before beginning this one:
Objectives
...
Outcomes
...
Deliverables
- Time management: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.
- Journal: Document your progress in your Course Journal. Some tasks may ask you to include specific items in your journal. Don't overlook these.
- Insights: If you find something particularly noteworthy about this unit, make a note in your insights! page.
Evaluation
Evaluation: NA
- This unit is not evaluated for course marks.
Contents
Task:
- Read the introductory notes on protein domains defined by 3D structure analysis.
CATH
Dawson et al. (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45:D289-D295. (pmid: 27899584) |
APSES domains in Chimera (from A4)
What precisely constitutes an APSES domain however is a matter of definition, as you can explore in the following (optional) task.
There is a rather important lesson in this: domain definitions may be fluid, and their boundaries may be computationally derived from sequence comparisons across many families, and do not necessarily correspond to individual structures. Make sure you understand this well.
}}
Given this, it seems appropriate to search the sequence database with the sequence of an Mbp1 structure–this being a structured, stable, subdomain of the whole that presumably contains the protein's most unique and specific function. Let us retrieve this sequence. All PDB structures have their sequences stored in the NCBI protein database. They can be accessed simply via the PDB-ID, which serves as an identifier both for the NCBI and the PDB databases. However there is a small catch (isn't there always?). PDB files can contain more than one protein, e.g. if the crystal structure contains a complex[1]. Each of the individual proteins gets a so-called chain ID–a one letter identifier– to identify them uniquely. To find their unique sequence in the database, you need to know the PDB ID as well as the chain ID. If the file contains only a single protein (as in our case), the chain ID is always A
[2]. make sure you understand the concept of protein chains, and chain IDs.
Further reading, links and resources
Notes
- ↑ Think of the ribosome or DNA-polymerase as extreme examples.
- ↑ Otherwise, you need to study the PDB Web page for the structure, or the text in the PDB file itself, to identify which part of the complex is labeled with which chain ID. For example, immunoglobulin structures some time label the light- and heavy chain fragments as "L" and "H", and sometimes as "A" and "B"–there are no fixed rules. You can also load the structure in VMD, color "by chain" and use the mouse to click on residues in each chain to identify it.
Self-evaluation
If in doubt, ask! If anything about this learning unit is not clear to you, do not proceed blindly but ask for clarification. Post your question on the course mailing list: others are likely to have similar problems. Or send an email to your instructor.
About ...
Author:
- Boris Steipe <boris.steipe@utoronto.ca>
Created:
- 2017-08-05
Modified:
- 2017-08-05
Version:
- 0.1
Version history:
- 0.1 First stub
This copyrighted material is licensed under a Creative Commons Attribution 4.0 International License. Follow the link to learn more.