CSB Assignment Week 1

From "A B C"
Revision as of 23:43, 21 January 2013 by Boris (talk | contribs)
Jump to navigation Jump to search

Assignments for Week 1


Note! This assignment is currently inactive. Major and minor unannounced changes may be made at any time.

 
 


Exercises for this week relate to this week's lecture.
Pre-reading for this week will prepare next week's lecture.
Exercises and pre-reading will be topics on next week's quiz.



Exercises

No exercises: instead - reading:

Bizzarri et al. (2013) Theoretical aspects of Systems Biology. Prog Biophys Mol Biol 112:33-43. (pmid: 23562476)

PubMed ] [ DOI ] The natural world consists of hierarchical levels of complexity that range from subatomic particles and molecules to ecosystems and beyond. This implies that, in order to explain the features and behavior of a whole system, a theory might be required that would operate at the corresponding hierarchical level, i.e. where self-organization processes take place. In the past, biological research has focused on questions that could be answered by a reductionist program of genetics. The organism (and its development) was considered an epiphenomenona of its genes. However, a profound rethinking of the biological paradigm is now underway and it is likely that such a process will lead to a conceptual revolution emerging from the ashes of reductionism. This revolution implies the search for general principles on which a cogent theory of biology might rely. Because much of the logic of living systems is located at higher levels, it is imperative to focus on them. Indeed, both evolution and physiology work on these levels. Thus, by no means Systems Biology could be considered a 'simple' 'gradual' extension of Molecular Biology.

Westerhoff (2011) Systems biology left and right. Meth Enzymol 500:3-11. (pmid: 21943889)

PubMed ] [ DOI ] Systems biology has come of age. In most scientifically active countries, significant research programs are funded. Various scientific journals, standards, repositories, and Web sites are devoted to the topic. Systems biology has spun off new subdisciplines such as synthetic biology and systems medicine. There are training courses at the M.Sc. and Ph.D. level at various Universities. And various industries are engaging systems biology in their R&D. Systems biology has also developed numerous new methodologies. This chapter attempts to organize these methodologies from the perspectives of the unique aims of systems biology, and by comparing with one of its parents, molecular biology.


Pre-reading

Ranganathan et al. (2013) Functional annotation of the human chromosome 7 "missing" proteins: a bioinformatics approach. J Proteome Res 12:2504-10. (pmid: 23308364)

PubMed ] [ DOI ] The chromosome-centric human proteome project aims to systematically map all human proteins, chromosome by chromosome, in a gene-centric manner through dedicated efforts from national and international teams. This mapping will lead to a knowledge-based resource defining the full set of proteins encoded in each chromosome and laying the foundation for the development of a standardized approach to analyze the massive proteomic data sets currently being generated. The neXtProt database lists 946 proteins as the human proteome of chromosome 7. However, 170 (18%) proteins of human chromosome 7 have no evidence at the proteomic, antibody, or structural levels and are considered "missing" in this study as they lack experimental support. We have developed a protocol for the functional annotation of these "missing" proteins by integrating several bioinformatics analysis and annotation tools, sequential BLAST homology searches, protein domain/motif and gene ontology (GO) mapping, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Using the BLAST search strategy, homologues for reviewed non-human mammalian proteins with protein evidence were identified for 90 "missing" proteins while another 38 had reviewed non-human mammalian homologues. Putative functional annotations were assigned to 27 of the remaining 43 novel proteins. Proteotypic peptides have been computationally generated to facilitate rapid identification of these proteins. Four of the "missing" chromosome 7 proteins have been substantiated by the ENCODE proteogenomic peptide data.