Transcriptome

From "A B C"
Revision as of 16:53, 30 January 2012 by Boris (talk | contribs) (→‎Contents)
Jump to navigation Jump to search

Transcriptome


This page is a placeholder, or under current development; it is here principally to establish the logical framework of the site. The material on this page is correct, but incomplete.


The transcriptome is the set of a cell's mRNA molecules. Microarray technology - the quantitative, sequence-specific hybridization of nucleotides - was the first domain of massively parallel, high-throughput biology. Quantifying gene expression levels in a tissue-, development-, or response-specific has yielded detailed insight into cellular function at the molecular level. Yet, while the questions remain, high-throughput sequencing methods are rapidly supplanting microarrays to provide the data. Moreover, we realize that the transcriptome is not just a passive buffer of expressed information: an entire, complex, intrinsic level of regulation through hybridization of small nuclear RNAs has been discovered.



 

Introductory reading

Malone & Oliver (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34. (pmid: 21627854)

PubMed ] [ DOI ]


 

Contents

  • Biological background

The dark matter of the transcriptome may just be noise[1]


  • Microarray standards and databases
  • Working with expression data
  • Interpretation


 

Exercises

Barrett & Edgar (2006) Mining microarray data at NCBI's Gene Expression Omnibus (GEO)*. Methods Mol Biol 338:175-90. (pmid: 16888359)

PubMed ] [ DOI ]


 

References

  1. Jarvis & Robertson (2011) The noncoding universe. BMC Biol 9:52. (pmid: 21798102)

    PubMed ] [ DOI ]


 

Further reading and resources

Carninci (2007) Constructing the landscape of the mammalian transcriptome. J Exp Biol 210:1497-506. (pmid: 17449815)

PubMed ] [ DOI ]

Chuang et al. (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140. (pmid: 17940530)

PubMed ] [ DOI ]

Hubble et al. (2009) Implementation of GenePattern within the Stanford Microarray Database. Nucleic Acids Res 37:D898-901. (pmid: 18953035)

PubMed ] [ DOI ]

Xie & Ahn (2010) Statistical methods for integrating multiple types of high-throughput data. Methods Mol Biol 620:511-29. (pmid: 20652519)

PubMed ] [ DOI ]

Parkinson et al. (2011) ArrayExpress update--an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39:D1002-4. (pmid: 21071405)

PubMed ] [ DOI ]

Zheng & Tao (2011) Stochastic analysis of gene expression. Methods Mol Biol 734:123-51. (pmid: 21468988)

PubMed ] [ DOI ]

Han et al. (2011) SnapShot: High-throughput sequencing applications. Cell 146:1044, 1044.e1-2. (pmid: 21925324)

PubMed ] [ DOI ]