Computational Systems Biology Main Page
Computational Systems Biology
Course Wiki for BCB420 (Computational Systems Biology) and JTB2020 (Applied Bioinformatics).
This is our main tool to coordinate information, activities and projects in University of Toronto's computational systems biology course BCB420. If you are not one of our students, this site is unlikely to be useful. If you are here because you are interested in general aspects of bioinformatics or computational biology, you may want to review the Wikipedia article on bioinformatics, or visit Wikiomics. Contact boris.steipe(at)utoronto.ca with any questions you may have.
Note: This page is are currently being edited for the 2019 Winter Term. Return soon.
Please note: There will be no class meeting on Tuesday, January 8. I will sign you up to the course mailing list using your information from BCH441 or BCB420 if I have that, otherwise I will use your official UofT eMail address.
JTB2020 students: I will not get a class list before Monday, January 7. Please contact me by eMail so I can update you with course details as soon as possible.
Note: If you are not enrolled in this course by Friday, January 4. it is unlikely that you will be able to catch up with preparations.
Contents
BCB420 / JTB2020
These are the course pages for BCB420H (Computational Systems Biology). Welcome, you're in the right place.
These are also the course pages for JTB2020H (Applied Bioinformatics). How come? Why is JTB2020 not the graduate equivalent of BCB410 (Applied Bioinformatics)? Let me explain. When this course was conceived as a required part of the (then so called) Collaborative PhD Program in Proteomics and Bioinformatics in 2003, there was an urgent need to bring graduate students to a minimal level of computer skills and programming; prior experience was virtually nonexistent. Fortunately, the field has changed and our current graduate students are usually quite competent at least in some practical aspects of computational biology. In this course we profit from the rich and diverse knowledge of the problem-domain our graduate students have, while bringing everyone up to a level of competence in the practical, computational aspects.
- The 2019 course...
In this course we explore systems biology of human genes with computational means in project oriented format. This will proceed in three phases:
- Foundations first: we will review basic computational skills and bioinformatics knowledge to bring everyone to the same level. In all likelihood you will need to start with these tasks well in advance of the actual lectures. This phase will include a comprehensive quiz on prerequisite material in week 3. We will explore data-sources and you will choose one data-source for which you will develop import code and document it in an R markdown document within an R package;
- Next we'll focus on Biocuration: the expertise-informed collection, integration and annotation of biological data. We will each choose a molecular "system" to work on, and define an ontology and data-model in which to annotate our system's components, their roles, and their relationships. The outcome of your curation task (together with your data script) will define the scope of this course's Oral Test;
- Finally, we will develop tools for Exploratory Data Analysis in computational systems biology. We will jointly develop code for a team-authored R package where everyone contributes one mini workflow for data preparation, exploration and interpretation. Your code contributions to the package will be assessed;
- There are several meta-skills that you will pick up "on the side" these include time management, working according to best practice of reproducible research in a collaborative environment on GitHub; report writing, and keeping a scientific lab journal.
Organization
- Dates
- BCB420/JTB2020 is a Winter Term course.
- Lectures: Tuesdays, 16:00 to 18:00. (Classes start at 10 minutes past the hour.)
- Note: there will be three open-ended collaborative planning sessions that may go well into the night. Attendance and participation is mandatory.
- Final Exam: None for this course.
- Events
- Tuesday, January 8 2019: Course officially begins. No class meeting. Get started on preparatory material (well in advance actually).
- Tuesday, January 15: First class meeting. Mock-quiz for preparatory material.
- Tuesday, January 22: First live quiz on preparatory material. Later: open ended session on data import
- Tuesday, February 5: Open ended session on system curation
- Tuesday, March 12: Open ended session on exploratory data analysis
- Location
- MS 3278 (Medical Sciences Building).
- Departmental information
- For BCB420 see the BCB420 Biochemistry Department Course Web page.
- For JTB2020 see the JTB2020 Course Web page for general information.
Prerequisites and Preparation
This course has formal prerequisites of BCH441H1 (Bioinformatics) or CSB472H1 (Computational Genomics and Bioinformatics). I have no way of knowing what is being taught in CSB472, and no way of confirming how much you remember from any of your previous courses, like BCH441 or BCB410. Moreover there are many alternative ways to become familiar with important course contents. Thus I generally enforce course-prerequisites only very weakly and you should not assume at all that having taken any particular combination of courses will have prepared you sufficiently. Instead I make the contents of the course very explicit. If your preparation is lacking, you will have to expend a very significant amount of effort. This is certainly possible, but whether you will succeed will depend on your motivation and aptitude.
The course requires (i) a solid understanding of molecular biology, (ii) solid, introductory level knowledge of bioinformatics, (iii) a good working knowledge of the R programming language.
The prerequisite material for this course includes the contents of the 2018 BCH441 course:
- <command>-Click to open the Bioinformatics Learning Units Map in a new tab, scale for detail.
- Open the Bioinformatics Knowledge Network Map and get an overview of the material. You should confidently be able to execute the tasks in the four Integrator Units .
- If you have taken BCH441 before, please note that many of the units have undergone significant revisions and material has been added. You will need to review the material and familiarize yourself more with the R programming aspects.
- If you have not taken BCH441, you will need to work through the material rather carefully. Estimate at least three weeks of time and get started immediately.
A minimal subset of bioinformatics knowledge you need to begin with work in BCB420 is linked from the BCB420-specific map below. To ensure everyone is adequately prepared, we will hold a Quiz on the Live units on that map in the third week of class. We will hold a mock-quiz on the material in the second week (our first class meeting) so everyone knows what to expect.
- <command>-Click to open the BCB420 Preparation Learning Units Map in a new tab, scale for detail.
- Hover over a learning unit to see its keywords.
- Click on a learning unit to open the associated page.
- The nodes of the learning unit network are colour-coded:
- Live units are green
- Units under development are light green. These are still in progress.
- Stubs (placeholders) are pale. These still need basic contents.
- Milestone units are blue. These collect a number of prerequisites to simplify the network.
- Integrator units are red. These embody the main goals of the course. These units are not for evaluation in BCB420.
- Arrows point from a prerequisite unit to a unit that builds on its contents.
Grading, Activities, Deliverables
For details of the deliverables, see below.
Activity | Weight BCB410 - (Undergraduates) |
Weight JTB2020 - (Graduates) |
Self-evaluation and Feedback session on preparatory material("Quiz"[1]) | 20 marks | 15 marks |
Oral Test (March 7/8) | 30 marks | 30 marks |
Collaborative software task and participation | 20 marks | 15 marks |
Journal | 25 marks | 25 marks |
Insights | 5 marks | 5 marks |
Pull request reviews | 10 marks | |
Total | 100 marks | 100 marks |
Getting started
Everything starts with the following four units:
- Introduction to editing Wiki pages (Optional if you have taken BCH441 or BCB410.)
This should be the first learning unit you work with, since your Course Journal will be kept on a Wiki, as well as all other deliverables. This unit includes an introduction to authoring Wikitext and the structure of Wikis, in particular how different pages live in separate "Namespaces". The unit also covers the standard markup conventions - "Wikitext markup" - the same conventions that are used on Wikipedia - as well as some extensions that are specific to our Course- and Student Wiki. We also discuss page categories that help keep a Wiki organized, licensing under a Creative Commons Attribution license, and how to add licenses and other page components through template codes.
- Your Course Journal (Mandatory - your Journals will be assessed. Note that the "rules" have changed - study the unit carefully and read the evaluation rubrics.)
Keeping a journal is an essential task in a laboratory. To practice keeping a technical journal, you will document your activities as you are working through the material of the course. A significant part of your term grade will be given for this Course Journal. This unit introduces components and best practice for lab- and course journals and includes a wiki-source template to begin your own journal on the Student Wiki.
- The "Plagiarism Unit" (Mandatory - must be the first entry in your Journal.)
Keeping a journal is an essential task in a laboratory. To practice keeping a technical journal, you will document your activities as you are working through the material of the course. A significant part of your term grade will be given for this Course Journal. This unit introduces components and best practice for lab- and course journals and includes a wiki-source template to begin your own journal on the Student Wiki.
- The "insights!" page (Mandatory - your "insights!" pages will be assessed.)
In paralell with your other work, you will maintain an insights! page on which you collect valuable insights and learning experiences of the course. Through this you ask yourself: what does this material mean - for the field, and for myself.
- Once you have completed these four units, get started immediately on the Introduction-to-R units. You need time and practice, practice, practice[2] to acquire the programming skills you need for the course.
- Whenever you want to take a break from studying R, continue with the other preparatory units.
PartI: Foundations
Don't forget to document your work in your Journal!
Your level of preparedness will be assessed in a "mock quiz" in week two, after which you have one more week to fill in gaps before our Quiz in week three. With that out of the way, we will look at different data sources that are useful in systems biology, including gene-level annotations and collections of experimental data, relationship data like physical and epistatic interactions, and systems-level data like metabolic or regulatory pathways. Each of you will select one data-source in our first open-ended session and then work on the following deliverables:
- a brief summary page on the Student Wiki
- an R package derived from rpt,
- hosted on GitHub,
- containing an R markdown page that describes and annotates code for importing the chosen data,
- and normalizing its identifiers to HuGO gene symbols,
- and containing a sample dataset for a small number of genes.
Part II: Biocuration
"Systems" are concepts and working with systems requires expert knowledge. To explore principles of expert curation of molecular systems, each of you will select one system in our second open-ended session and then work on the following deliverables:
- a project page on the Student Wiki
- that contains information about the system objectives;
- an annotated list of genes that are system members;
- an annotated list of related genes that are not system members;
- annotations according to a "System Roles Ontology";
- an attached JSON file that can be used to load your system data into a systems database that implements a relational data model for molecular systems;
Your data import script and your system model will be assessed in the Oral Test.
Part III: Exploration
At the end of Parts I and II we will have data available and annotated systems that induce relations on the data. Using this information, we can formulate tools for exploratory data analysis (EDA): isolating and evaluating features, looking at correlations, identifying patterns in networks, clustering data etc. Each of you will select one EDA workflow in our third open-ended session for which to build a tool in a jointly authored R package. Your deliverables are:
- a project page on the student Wiki that contains a specification of your tool;
- an implementation of your tool as part of a jointly authored R package under continuous integration;
- a Vignette in the package that describes the tool and includes sample code for which the data is also provided in the package.
Your deliverables will be jointly evaluated, together with your participation in constructing the package.
Extensions for term work
Extensions for term work in this course are subject to Faculty regulations and will only be considered within the framework determined by the Faculty policies.
- Regular Submissions
- It is Faculty policy to require assessments to be "fair, equitable and reasonable". In order to be equitable, granting extensions requires the student to demonstrate that the need for the extension is due to unavoidable circumstances that go significantly beyond what was expected of the rest of the class. In general "official" documentation will be required: UofT Verification of Illness or Injury Form, Student Health or Disability Related Certificate, a College Registrar’s Letter, and an Accessibility Services Letter.
- Signing up for the oral tests.
- The dates for the Oral Test have been announced at the beginning of the term on this syllabus. If you fail to sign up for a slot, or if you fail to show up at the scheduled time, we apply the Faculty policy for a missed Midterm Test: "if the reasons for missing your test are acceptable to the instructor, a make-up opportunity should be offered to the student where practicable. "Acceptable" reasons will be considered
- if they are justified,
- if the consideration is "fair, equitable and reasonable", and
- if the reason is documented through one of the four types of "official" documentation: UofT Verification of Illness or Injury Form, Student Health or Disability Related Certificate, a College Registrar’s Letter, and an Accessibility Services Letter.
- Scope for a "practicable" make-up opportunity for the Oral Test will be limited.
- The dates for the Oral Test have been announced at the beginning of the term on this syllabus. If you fail to sign up for a slot, or if you fail to show up at the scheduled time, we apply the Faculty policy for a missed Midterm Test: "if the reasons for missing your test are acceptable to the instructor, a make-up opportunity should be offered to the student where practicable. "Acceptable" reasons will be considered
- Submissions due on the Template:Lastdate.
- Since the course does not have a final exam, the Faculty requires grades to be marked, collated and submitted a few days after the Template:Lastdate. Therefore I cannot normally grant extensions beyond this date. The Faculty allows so called informal extensions to be granted "in extraordinary circumstances"; in those cases too, the requirement to be "fair, equitable and reasonable" will apply, i.e. you would need to demonstrate that the need for the extension was due to unavoidable circumstances that go significantly beyond what was expected of the rest of the class, and submit "official" documentation to me. In that case, (i) we would determine an adjusted submission date, (ii) I will initially submit a mark of 0 for the missing submissions, and (iii) I will submit an amended mark, after that date, if appropriate. Note that the Faculty requires that such extensions don't go beyond a few days after the end of the Final Examination Period. If you require an extension beyond that date you need to submit a formal petition through your College Registrar.
Late penalties
Late penalties will be applied according to the following formula: (marks achieved) * 0.5^(fractional days late)
. However material submitted more than 3.0 days late (72 hours or more) will be marked zero</ref>. Note: this does not apply to material due before the Oral Test (see there).
Copyright and Licensing
We follow [FOSS] principles in this course. You automatically own copyright to all material you prepare. All material must be licensed for free re-use, under the condition of fair attribution. In practice:
All pages that you place on the Student Wiki must include a {{CC-BY}}
tag. All documentation within GitHub pages that you prepare for this course must include a Creative Commons License - Attribution (CC-BY), v. 4.0 or later. All code submitted for this course must be licensed under the MIT
software license. Unlicensed submissions will have marks deducted and may be removed from the Wiki.
Academic integrity
Our rules on Plagiarism and Academic Misconduct are clearly spelled out in this learning unit. This unit is part of our course prerequisites, and everyone documents in their course journal that they have worked through the unit and understood it. Consequences of having to report to the Office of Student Academic Integrity (OSAI) for plagiarism, misrepresentation or falsification include an indelible failing mark on the transcript, a delay in graduation, or not being able to complete your POSt. Please take extra time to clearly understand the requirements, and define for yourself what they mean for every aspect of your work.
Marks adjustments
I do not adjust marks towards a target mean and variance (i.e. there will be no "belling" of grades). I feel strongly that such "normalization" detracts from a collaborative and mutually supportive learning environment. If your classmate gets a great mark because you helped them with a difficult concept, this should never have the effect that it brings down your mark through class average adjustments. Collaborate as much as possible, it is a great way to learn. But do keep it honest and carefully consider our rules on Plagiarism and Academic Misconduct.
Timetable and contents details
Warning: The activity details are currently being edited for the 2019 Winter Term. Return to this page soon.
Note: Click on the "▽" - symbol to see details for each week's activities.
Part I: Foundations
Week | In class: Tuesday, January 8 2019 | This week's activities |
1 |
|
Details ... ▽△ |
Week | In class: Tuesday, January 15 2019 | This week's activities |
2 |
|
Details ... ▽△ |
Week | In class: Tuesday, January 22 2019 | This week's activities |
3 |
|
Details ... ▽△ |
Week | In class: Tuesday, January 29 2019 | This week's activities |
4 |
|
Details ... ▽△ |
Part II: Curation
Week | In class: Tuesday, February 5 2019 | This week's activities |
5 |
|
Details ... ▽△ |
Week | In class: Tuesday, February 12 2019 | This week's activities |
6 |
|
Details ... ▽△ |
Week | In class: Tuesday, February 19 2019 | This week's activities |
– |
|
Details ... ▽△ |
Week | In class: Tuesday, February 26 2019 | This week's activities |
7 |
|
Details ... ▽△ |
Week | In class: Tuesday, March 5 2019 | This week's activities |
8 |
|
Details ... ▽△ |
Part III: Exploration
Week | In class: Tuesday, March 12 2019 | This week's activities |
9 |
|
Details ... ▽△ |
Week | In class: Tuesday, March 19 2019 | This week's activities |
10 |
|
Details ... ▽△ |
Week | In class: Tuesday, March 26 2019 | This week's activities |
11 |
|
Details ... ▽△ |
Week | In class: Tuesday, April 2 2019 | This week's activities |
12 |
|
NA Details ... ▽△ |
Resources
- Course related
- Student Wiki
- The Course Google Group.
- Netiquette for the Group mailing list
Miller et al. (2011) Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics 12:322. (pmid: 21816037) |
Chang et al. (2013) Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline. BMC Bioinformatics 14:368. (pmid: 24359104) |
Thompson et al. (2016) Cross-platform normalization of microarray and RNA-seq data for machine learning applications. PeerJ 4:e1621. (pmid: 26844019) |
325C78 | 7097B8 | 9BACCF | A8A5CC | D7C0F0 |
Notes
- ↑ I call these activities Quiz sessions for brevity, however they are not quizzes in the usual sense, since they rely on self-evaluation and immediate feedback.
- ↑ It's practice!
- ↑ Note: late-penalties apply.