Difference between revisions of "BIO Assignment Week 3"

From "A B C"
Jump to navigation Jump to search
m
Line 20: Line 20:
 
==Introduction==
 
==Introduction==
  
<!--
 
One of the foundations of bioinformatics is the empirical observation that related sequences conserve structure, and often function. This is the basis on which we can make inferences from well-studied model organisms in species that have not been studied as deeply. The model case for our assignments is to take annotations from baker's yeast, ''Saccharomyces cerevisiae'' and apply them to YFO.
 
  
Therefore, in this assignment we will
 
* use the sequence search program BLAST to retrieve a sequence similar to yeast Mbp1 in YFO;
 
* use a number of tools to annotate the sequence.
 
 
Keeping with our theme of sequence analysis, we will
 
* explore EMBOSS tools;
 
* compute and plot relative amino acid frequencies in '''R''';
 
* and (optionally) use Chimera to explore H-bond patterns in the Mbp1 APSES domain structure.
 
 
&nbsp;
 
 
==Retrieve==
 
 
 
In [[BIO_Assignment_Week_2#Protein|Assignment 2]] you looked at sequences in YFO that are [http://www.ncbi.nlm.nih.gov/protein?LinkName=protein_protein&from_uid=6320147 related to yeast Mbp1], by following a link from the RefSeq record. I mentioned that there are more principled ways to find related proteins: that principle is to search for similar sequences. Exactly how this works will be the subject of later lectures, but the tool that is most commonly used for this task is called '''BLAST''' (Basic Local Alignment And Search Tool). The task of this assignment is to perform a number of sequence annotations to the sequence from YFO that is '''most similar''' to Mbp1, or, more precisely, that contains an APSES domain that is most similar<ref>As you will see later on in the assignment, Mbp1-related proteins contain "Ankyrin" domains, a very widely distributed protein-protein interaction motif that may give rise to false-positive similarities for full-length sequence searches. Therefore, we search only with the DNA binding domain sequence, since this is the functionality that best characterizes the "function" of the protein we are interested in.</ref>.
 
 
&nbsp;
 
===Search input===
 
 
 
First, we need to '''define the sequence''' we will search with, as the search input.
 
 
 
====Defining the sequence to search with====
 
 
I have highlighted the extent of the APSES domain sequence in the previous assignment, but when you explored the corresponding structure in Chimera, you saw that the structured protein domain is larger and the additional secondary structure elements are in fact well integrated into the overall domain. This is not surprising: canonical domain definitions are compiled from many species and examples, and they generally comprise only the common core. Looking up the source of the domain annotations for Mbp1 is very easy:
 
 
 
{{task|1=
 
<ol>
 
<li> Access the [http://www.ncbi.nlm.nih.gov/protein/NP_010227 RefSeq record for yeast Mbp1].</li>
 
<li> While you are here, download a FASTA formatted version of the sequence to your '''R''' working directory and give it a filename of <code>mbp1-sacce.fa</code>. We will need it later. <small>It should be straightforward from the NCBI page how to achieve that. As a hint, you need to use the '''Send to...''' link to actually download the file.</small></li>
 
<li>  On the RefSeq page, look for the link '''Related Information''' &rarr; '''CDD Search Results''' and  follow it.</li>
 
</ol>
 
 
 
This is a domain annotation: CDD is the NCBI's '''C'''onserved '''D'''omain '''D'''atabase and the annotation was done by a tool that scanned the sequence of Mbp1 for segments that are similar to any of the domain definitions stored in the CDD. We will return to CDD in the next assignment.
 
 
<ol start="4">
 
<li>Click on the blue box labeled Kila-N in the graph to access the CDD entry for this domain.</li>
 
<li>Read the abstract. You should understand the relationship between Kila-N and APSES domains. One is a subfamily of the other.</li>
 
<li>Confirm that the domain definition &ndash; as applied to the Mbp1 sequence (which is labeled as "query") &ndash; corresponds to the region we highlighted in the last assignment.</li>
 
</ol>
 
 
 
What precisely constitutes an APSES domain however is a matter of definition, as you can explore in the following (optional) task.
 
 
 
<div class="mw-collapsible mw-collapsed" data-expandtext="Expand" data-collapsetext="Collapse" style="border:#000000 solid 1px; padding: 10px; margin-left:25px; margin-right:25px;">Optional: Load the structure in Chimera, like you did in the last assignment and switch on stereo viewing ... (more) <div  class="mw-collapsible-content">
 
<ol start="7">
 
<li>Display the protein in ribbon style, e.g. with the '''Interactive 1''' preset.
 
<li>Access the '''Interpro''' information page for Mbp1 at the EBI: http://www.ebi.ac.uk/interpro/protein/P39678
 
<li>In the section '''Domains and repeats''', mouse over the red annotations and note down the residue numbers for the annotated domains. Also follow the links to the respective Interpro domain definition pages.
 
</ol>
 
 
At this point we have definitions for the following regions on the Mbp1 protein ...
 
*The KilA-N (pfam 04383) domain definition as applied to the Mbp1 protein sequence by CDD;
 
*The InterPro ''KilA, N-terminal/APSES-type HTH, DNA-binding (IPR018004)'' definition annotated on the Mbp1 sequence;
 
*The InterPro ''Transcription regulator HTH, APSES-type DNA-binding domain (IPR003163)'' definition annotated on the Mbp1 sequence;
 
*<small>(... in addition &ndash; without following the source here &ndash; the UniProt record for Mbp1 annotates a "HTH APSES-type" domain from residues 5-111)</small>
 
 
... each with its distinct and partially overlapping sequence range. Back to Chimera:
 
-->
 
<!-- For reference:
 
1MB1: 3-100
 
2BM8: 4-102
 
CDD KilA-N: 19-93
 
InterPro KilA-N: 23-88
 
InterPro APSES: 3-133
 
Uniprot HTH/APSES: 5-111
 
-->
 
<!--
 
<ol start="10">
 
<li>In the sequence window, select the sequence corresponding to the '''Interpro KilA-N''' annotation and colour this fragment red. <small>Remember that you can get the sequence numbers of a residue in the sequence window when you hover the pointer over it - but do confirm that the sequence numbering that Chimera displays matches the numbering of the Interpro domain definition.</small></li>
 
 
<li>Then select the residue range(s) by which the '''CDD KilA-N''' definition is larger, and colour that fragment orange.</li>
 
 
<li>Then select the residue range(s) by which the '''InterPro APSES domain''' definition is larger, and colour that fragment yellow.</li>
 
 
<li>If the structure contains residues outside these ranges, colour these white.</li>
 
 
<li>Study this in a side-by-side stereo view and get a sense for how the ''extra'' sequence beyond the Kil-A N domain(s) is part of the structure, and how the integrity of the folded structure would be affected if these fragments were missing.</li>
 
 
<li>Display Hydrogen bonds, to get a sense of interactions between residues from the differently colored parts. First show the protein as a stick model, with sticks that are thicker than the default to give a better sense of sidechain packing:<br />
 
::(i) '''Select''' &rarr; '''Select all''' <br />
 
::(ii) '''Actions''' &rarr; '''Ribbon''' &rarr; '''hide''' <br />
 
::(iii) '''Select''' &rarr; '''Structure''' &rarr; '''protein''' <br />
 
::(iv) '''Actions''' &rarr; '''Atoms/Bonds''' &rarr; '''show''' <br />
 
::(v)  '''Actions''' &rarr; '''Atoms/Bonds''' &rarr; '''stick''' <br />
 
::(vi) click on the looking glass icon at the bottom right of the graphics window to bring up the inspector window and choose '''Inspect ... Bond'''. Change the radius to 0.4.<br />
 
</li>
 
 
<li>Then calculate and display the hydrogen bonds:<br />
 
::(vii) '''Tools''' &rarr; '''Surface/Binding Analysis''' &rarr; '''FindHbond''' <br />
 
::(viii) Set the '''Line width''' to 3.0, leave all other parameters with their default values an click '''Apply'''<br />
 
:: Clear the selection.<br />
 
Study this view, especially regarding side chain H-bonds. Are there many? Do side chains interact more with other sidechains, or with the backbone?
 
</li>
 
 
<li>Let's now simplify the scene a bit and focus on backbone/backbone H-bonds:<br />
 
::(ix) '''Select''' &rarr; '''Structure''' &rarr; '''Backbone''' &rarr; '''full'''<br />
 
::(x)  '''Actions''' &rarr; '''Atoms/Bonds''' &rarr; '''show only'''<br /><br />
 
:: Clear the selection.<br />
 
In this way you can appreciate how H-bonds build secondary structure - &alpha;-helices and &beta;-sheets - and how these interact with each other ... in part '''across the KilA N boundary'''.
 
</li>
 
 
 
<li>Save the resulting image as a jpeg no larger than 600px across and upload it to your Lab notebook on the Wiki.</li>
 
<li>When you are done, congratulate yourself on having earned a bonus of 10% on the next quiz.</li>
 
</ol>
 
 
</div>
 
</div>
 
 
 
There is a rather important lesson in this: domain definitions may be fluid, and their boundaries may be computationally derived from sequence comparisons across many families, and do not necessarily correspond to individual structures. Make sure you understand this well.
 
}}
 
 
 
Given this, it seems appropriate to search the sequence database with the sequence of an Mbp1 structure&ndash;this being a structured, stable, subdomain of the whole that presumably contains the protein's most unique and specific function. Let us retrieve this sequence. All PDB structures have their sequences stored in the NCBI protein database. They can be accessed simply via the PDB-ID, which serves as an identifier both for the NCBI and the PDB databases. However there is a small catch (isn't there always?). PDB files can contain more than one protein, e.g. if the crystal structure contains a complex<ref>Think of the [http://www.pdb.org/pdb/101/motm.do?momID=121 ribosome] or [http://www.pdb.org/pdb/101/motm.do?momID=3 DNA-polymerase] as extreme examples.</ref>. Each of the individual proteins gets a so-called '''chain ID'''&ndash;a one letter identifier&ndash; to identify them uniquely. To find their unique sequence in the database, you need to know the PDB ID as well as the chain ID. If the file contains only a single protein (as in our case), the chain ID is always '''<code>A</code>'''<ref>Otherwise, you need to study the PDB Web page for the structure, or the text in the PDB file itself, to identify which part of the complex is labeled with which chain ID. For example, immunoglobulin structures some time label the ''light-'' and ''heavy chain'' fragments as "L" and "H", and sometimes as "A" and "B"&ndash;there are no fixed rules. You can also load the structure in VMD, color "by chain" and use the mouse to click on residues in each chain to identify it.</ref>. make sure you understand the concept of protein chains, and chain IDs.
 
 
 
{{task|1=
 
<ol>
 
<li> Back at the [http://www.ncbi.nlm.nih.gov/protein/NP_010227 RefSeq record for yeast Mbp1], enter the '''PDB-ID''', an underscore, and the '''chain ID''' for one of the crystal structures into the search field. You can use <code>1MB1_A</code> or <code>1BM8_A</code>, but don't use <code>1L3G</code>: this NMR structure includes a large stretch of unstructured residues.</li>
 
<li> Click on '''Display settings''' and choose '''FASTA (text)'''. You should get something like:
 
<source lang="text">
 
>gi|157830387|pdb|1BM8|A Chain A, Dna-Binding Domain Of Mbp1
 
QIYSARYSGVDVYEFIHSTGSIMKRKKDDWVNATHILKAANFAKAKRTRILEKEVLKETHEKVQGGFGKY
 
QGTWVPLNIAKQLAEKFSVYDQLKPLFDF
 
</source></li>
 
<li> Save this sequence in your notebook, in case we need it later.</li>
 
</ol>
 
}}
 
 
 
Next, we use this sequence to find its most similar relative in YFO using BLAST.
 
 
 
&nbsp;
 
 
====BLAST search====
 
 
 
{{task|1=
 
# Navigate to the [http://www.ncbi.nlm.nih.gov/blast '''BLAST''' entry page at the NCBI].
 
# Click on '''protein blast''' as the BLAST program to run.
 
# Paste the sequence of the yeast Mbp1 DNA-binding domain into the search field.
 
# Set the following parameters:
 
## As '''Database''' option choose '''Reference proteins (refseq_protein)'''
 
## As '''Organism''' enter the binomial name of YFO. Make sure you spell it right, the page will try to autocomplete your entry. Species level is detailed enough, you don't have to specify the strain (e.g. I would specify "''Ustilago maydis''" '''not''' "''Ustilago maydis'' 521").
 
# Then click on the '''BLAST''' button and wait for the result to appear. You will first see a graph of any conserved domains in your query sequence, this is not yet what you are waiting for...
 
# Patience.
 
# Patience. The database is large.
 
# Patience. Execution times vary greatly by time of day.
 
# The top "hit" on the results page is what you are looking for. Its alignment and alignment score are shown in the '''Alignments''' section a bit further down the page. Your hit should have on the order of more than 40% identities to the query and match at least 80 residues or so. <small>If your match seems less and worse than that, please eMail me to troubleshoot.</small>
 
# The first item for each hit is a link to its database entry, right next to the checkbox.  It says something like <code>ref&#124;NP_123456789</code> or <code>ref&#124;XP_123456789</code> ... follow that link.
 
# Note the RefSeq ID, and save the sequence in FASTA format into your '''R''' working directory, as you did for Mbp1 at the beginning of the assignment. Give this a filename of <code>mbp1-xxxxx.fa</code>, but replace <code>xxxxx</code> with its short species label for YFO. For simplicity I will refer to this sequence as "''YFO'' Mbp1" in the future.
 
}}
 
 
 
&nbsp;
 
-->
 
  
 
==Store==
 
==Store==
Line 502: Line 337:
  
  
The function to '''add''' a new entry to the database looks quite similar. But we '''have''' to add a test whether the species name has been entered if it's a new taxonomy ID.
+
The function to '''add''' a new entry to the database looks quite similar. But we '''have''' to add a test whether the species name has been entered when we add a species with a new taxonomy ID.
  
 
<source lang="R">
 
<source lang="R">
Line 574: Line 409:
 
             refseq_id = "XP_011392621",
 
             refseq_id = "XP_011392621",
 
             uniprot_id = "A0A0D1DP35",
 
             uniprot_id = "A0A0D1DP35",
             taxonomy_id = "5270",
+
             taxonomy_id = 5270,
 
             genome_xref = "NC_026499.1",
 
             genome_xref = "NC_026499.1",
             genome_from = "150555",
+
             genome_from = 150555,
             genome_to = "152739",
+
             genome_to = 152739,
 
             sequence = newSeq,
 
             sequence = newSeq,
 
             species_name = "Ustilago maydis")
 
             species_name = "Ustilago maydis")
Line 597: Line 432:
 
}}
 
}}
  
 
==Analyze==
 
  
 
&nbsp;
 
&nbsp;
  
===EMBOSS tools===
+
==Analyze==
  
 
Let us perform a few simple sequence analyses using the online EMBOSS tools. EMBOSS (the European Molecular Biology laboratory Open Software Suite) combines a large number of simple but fundamental sequence analysis tools. The tools can be [http://emboss.sourceforge.net/download/ installed locally on your own machine], or run via a public Web interface. Google for [http://www.google.ca/search?q=EMBOSS+explorer EMBOSS explorer], public access points include http://emboss.bioinformatics.nl/ .
 
Let us perform a few simple sequence analyses using the online EMBOSS tools. EMBOSS (the European Molecular Biology laboratory Open Software Suite) combines a large number of simple but fundamental sequence analysis tools. The tools can be [http://emboss.sourceforge.net/download/ installed locally on your own machine], or run via a public Web interface. Google for [http://www.google.ca/search?q=EMBOSS+explorer EMBOSS explorer], public access points include http://emboss.bioinformatics.nl/ .
Line 668: Line 501:
  
  
 +
&nbsp;
 +
 +
=='''R''' Sequence Analysis Tools==
 +
 +
It's interesting to see this collection of tools that were carefully designed some twenty years ago, as an open source replacement for a set of software tools - the GCG package - that was indispensable for molecular biology labs in the 80s and 90s, but whose cost had become prohibitive. Fundamentally this is a building block approach, and the field has turned to programming solutions instead.
 +
 +
As for functionality, much more sophisticated functions are available on the Web: do take a few minutes and browse the [http://bioinformatics.ca/links_directory/tag/protein-sequence-analysis curated Web services directory of bioinformatics.ca].
 +
 +
As for versatility, '''R''' certainly has the edge. Let's explore some of the functions available in the <code>seqinr</code> package that you already encountered in the introductory [[R tutorial]]. They are comparatively basic - but it is easy to prepare our own analysis.
 +
 +
<source lang="R">
 +
if (!require(seqinr, quietly=TRUE)) {
 +
install.packages("seqinr")
 +
library(seqinr)
 +
}
 +
 +
help(package = seqinr) # shows the available functions
 +
 +
# Let's try a simple function
 +
?computePI
 +
 +
# This takes as input a vector of upper-case AA codes
 +
# Let's retrieve the YFO sequence from our datamodel
 +
# (assuming it is the last one that was added):
 +
 +
db$protein[nrow(db$protein), "sequence"]
 +
 +
# We can use the function strsplit() to split the string
 +
# into single characters, but we transform the sequence
 +
# into uppercase first.
 +
 +
s <- db$protein[nrow(db$protein), "sequence"]
 +
s <- toupper(s)
 +
s <- strsplit(s, "") # splitting on the empty spring
 +
                    # splits into single characters
 +
s <- unlist(s)
 +
 +
# Alternatively, seqinr provides
 +
# the function s2c() to convert strings into
 +
# character vectors (and c2s to convert them back).
 +
 +
s <- s2c(toupper(db$protein[nrow(db$protein), "sequence"]))
 +
s
 +
 +
computePI(s)  # isoelectric point
 +
pmw(s)        # molecular weight
 +
AAstat(s)    # This also plots the distribution of
 +
              # values along the sequence
 +
 +
# A true Labor of Love has gone into the
 +
# compilation of the "aaindex" data:
 +
 +
?aaindex
 +
data(aaindex)
 +
 +
length(aaindex)
 +
 +
# Here are all the index descriptions
 +
for (i in 1:length(aaindex)) {
 +
cat(paste(i, ": ", aaindex[[i]]$D, "\n", sep=""))
 +
}
 +
 +
 +
# Lets use one of the indices to calculate and plot amino-acid
 +
# composition enrichment:
 +
aaindex[[459]]
 +
 +
<source>
 +
 +
 +
=== Sequence Composition Enrichment ===
 +
 +
We will plot an enrichment plot to compare one of the amino acid indices with the
 +
situation in our sequence.
 +
 +
<source lang="R">
 +
 +
refData <- aaindex[[459]]$I  # reference frequencies in %
 +
names(refData) <- a(names(refData))  # change names to single-letter
 +
                                    # code using seqinr's "a()" function
 +
refData
 +
 +
 +
# tabulate our sequence of interest and normalize
 +
obsData <- table(s)                # count occurrences
 +
obsData = 100 * (obsData / sum(obsData))  # Normalize
 +
obsData
 +
 +
len <- length(refData)
 +
 +
logRatio <- numeric() # create an empty vector
 +
 +
# loop over all elements of the reference, calculate log-ratios
 +
# and store them in the vector
 +
for (i in 1:len) {
 +
aa <- names(refData)[i] # get the name of that amino acid
 +
fObs <- obsData[aa]  # retrieve the frequency for that name
 +
fRef <- refData[aa]
 +
logRatio[aa] <- log(fObs / fRef) / log(2)
 +
}
 +
 +
barplot(logRatio)
 +
 +
 +
 +
# Sort by frequency, descending
 +
logRatio <- sort(logRatio, decreasing = TRUE) 
 +
 
 +
barplot(logRatio)
 +
 +
 +
 +
# label the y-axis
 +
# (see text() for details)
 +
label <- expression(paste(log[2],"( f(obs) / f(ref) )", sep = ""))
 +
 +
barplot(logRatio,
 +
        main = paste("AA composition enrichment"),
 +
        ylab = label,
 +
        cex.names=0.9)
 +
 +
 +
 +
# color the bars by type 
 +
# define colors
 +
chargePlus  <- "#282A3F"
 +
chargeMinus <- "#531523"
 +
hydrophilic <- "#47707F"
 +
hydrophobic <- "#6F7A79"
 +
plain      <- "#EDF7F7"
 +
  
 +
# Assign the colors to the different amino acid names
 +
barColors <- character(len)
 +
 +
for (i in 1:length(refData)) {
 +
AA <- names(logRatio[i])
 +
        if (grepl("[HKR]",      AA)) {barColors[i] <- chargePlus }
 +
    else if (grepl("[DE]",      AA)) {barColors[i] <- chargeMinus}
 +
    else if (grepl("[NQST]",    AA)) {barColors[i] <- hydrophilic}
 +
    else if (grepl("[FAMILYVW]", AA)) {barColors[i] <- hydrophobic}
 +
    else                              barColors[i] <- plain
 +
}
 +
 +
barplot(logRatio,
 +
        main = paste("AA composition enrichment"),
 +
        ylab = label,
 +
        col = barColors,
 +
        cex.names=0.9)
 +
 +
 +
# draw a line at 0
 +
abline(h=0)
 +
 
 +
# add a legend that indicates what the colours mean
 +
legend (x = 1,
 +
        y = -1,
 +
        legend = c("charged (+)",
 +
                  "charged (-)",
 +
                  "hydrophilic",
 +
                  "hydrophobic",
 +
                  "plain"),
 +
        bty = "n",
 +
        fill = c(chargePlus,
 +
                chargeMinus,
 +
                hydrophilic,
 +
                hydrophobic,
 +
                plain)
 +
        )
 +
 +
       
 +
</source>
 +
 +
{{task|1=
 +
 +
Interpret this plot. (Can you?)
 +
 +
}}
 +
 +
 +
&nbsp;
 +
 +
 +
;That is all.
  
  
;TBC
+
&nbsp;
  
 
== Links and resources ==
 
== Links and resources ==

Revision as of 04:50, 4 October 2015

Assignment for Week 3
Sequence Analysis

< Assignment 2 Assignment 4 >

Note! This assignment is currently active. All significant changes will be announced on the mailing list.

 
 

Concepts and activities (and reading, if applicable) for this assignment will be topics on next week's quiz.



 

Introduction

Store

The Protein datamodel

The revised "Schema" for a data model that stores data for APSES domain proteins, constructed in the MySQL workbench application. The application adds icons to table attributes: the yellow "key" is the primary key, red diamonds are foreign keys, white diamonds are normal attributes, and green diamonds cannot be "NULL". All relationships are 1 to 0,n.

Here is a revised schema for the initial model that we developed in class:

  • The protein table is at the centre. Its primary key is a unique integer. We store the NCBI RefSeq ID and the Uniprot ID in the table. We would not call them "foreign keys", since the information they reference is not in our schema but at the NCBI/EBI. The genome_xref field will hold the ID for the actual genomic sequence, where the coding region of the gene is identified by its start ("from") and end ("to").
  • The taxonomy table holds information about species. We use the NCBI taxonomy ID as its primary key. The same key appears in the protein table as the foreign key that links the protein with its proper taxonomy information.
  • The protein_feature table links a protein with all the features that we annotate it with. Start and end coordinates identify the region of the sequence we have annotated. In principle these attributes could be NULL.
  • The feature table contains a feature name and a textual definition. Again, these attributes could theoretically be NULL.
  • The protein_xref table and the feature_xref table connect cross-reference data.
  • The xref table needs to hold two attributes: the type of cross-reference (e.g. PubMed), from which we would construct an URL or other accession method, and the actual key (e.g. 10747782). The type of cross-reference needs some thought however: this field needs a "controlled vocabulary" to ensure that the same cross-reference is described consistently with the same string (pubmed? PubMed? Pub-Med?). There are a number of ways to achieve this, the best way is to store these types in their own table - xref_type - and link to that table via a foreign key.


 

Implementing the Data Model in R

To actually implement the model in R we will create the tables as data frames, and we will collect them in a list. We don't have to keep the tables in a list - we could also keep them as independent objects, but with a table named "protein" we should be worried of inadvertently overwriting the table. A list is neater, more flexible (we might want to have several of these), it reflects our intent about the model better, and doesn't require very much more typing. For now, to keep things simple, we will implement only two tables: protein and taxonomy. We'll add the rest when we actually need them.

db <- list()      # we'll call our database "db" and start with an empty list

db$protein <- data.frame(id = 1,
                  name = "Mbp1",
                  refseq_id = "NP_010227",
                  uniprot_id = "P39678",
                  taxonomy_id = 4932,
                  genome_xref = "NC_001136.10",
                  genome_from = 352877,
                  genome_to = 355378,
                  sequence = "...",
                  stringsAsFactors = FALSE)
                      
db$taxonomy <- data.frame(id = 4932, 
                  species_name = "Saccharomyces cerevisiae",
                  stringsAsFactors = FALSE)

# Let's add a second protein:
db$protein <- rbind(db$protein,
                data.frame(id = 2,
                  name = "Res2",
                  refseq_id = "NP_593032",
                  uniprot_id = "P41412",
                  taxonomy_id = 4896,
                  genome_xref = "NC_003424.3",
                  genome_from = 686543,
                  genome_to = 689179,
                  sequence = "...",
                  stringsAsFactors = FALSE))

db$taxonomy <- rbind(db$taxonomy,
                 data.frame(id = 4896,
                  species_name = "Schizosaccharomyces pombe",
                  stringsAsFactors = FALSE))

str(db)

# you can look at the contents of the tables in the usual way we would access
# elements from lists and dataframes. Here are some examples:
db$protein
db$protein$refseq_id
db$protein[,"name"]
db$taxonomy
db$taxonomy[1,]


# Here is an example to look up information in one table,
# based on a condition in another table:
# what is the species name for the protein
# whose name is "Mbp1"?

# First, get the taxonomy_id for the Mbp1 protein. This is
# the key we need for the taxonomy table. We find it in a cell in the 
# table: db$protein[<row>, <column>]
# <row> is that row for which the value in
# the "name" column is Mbp1:

db$protein$name == "Mbp1" # TRUE FALSE

# The <column> is called "taxonomy_id". Simply
# insert these two expressions in the square
# brackets.

db$protein[db$protein$name == "Mbp1", "taxonomy_id"]

# Assign the taxonomy_id value ...
x <- db$protein[db$protein$name == "Mbp1", "taxonomy_id"]

# ... and fetch the species_name value from db$taxonomy

db$taxonomy[db$taxonomy$id == x, "species_name"]

As you see we can edit any component of our data model directly by assigning new values to the element. But in general that's a really bad idea, since it is far too easy to bring the whole model into an inconsistent state. It's much better to write functions that get and set data elements, not only to keep the data consistent, but also because it is much easier, if the model ever changes, to simply edit the function code, rather than having to repeat every single data entry by hand.

What would an setData function have to look like? It should

  • create a new entry if the requested row of a table does not exist yet;
  • update data if the protein exists;
  • perform consistency checks (i.e. check that the data has the correct type);
  • perform sanity checks (i.e. check that data values fall into the expected range);
  • perform completeness checks (i.e. handle incomplete data)

Let's start simple, and create a set- function to add new values to existing sequence data. Also, for clarity, we'll forgo many checks. The first thing we should do is to add the actual sequence.

We only entered a placeholder for the sequence field. Sequences come in many different flavours when we copy them from a Webpage: there can be whitespace, carriage returns, numbers, they can be upper-case, lower-case mixed-case ...

What we want in our sequence data field is one string that contains the entire sequence, and nothing but upper-case, amino-acid code letters.

We'll need to look at how we work with strings in R, how we identify and work with patterns in strings. This is a great time to introduce regular expressions.


A Brief First Encounter of Regular Expressions

Regular expressions are a concise description language to define patterns for pattern-matching in strings.

Truth be told, many programmers have a love-hate relationship with regular expressions. The syntax of regular expressions is very powerful and expressive, but also terse, not always intuitive, and sometimes hard to understand. I'll introduce you to a few principles here that are quite straightforward and they will probably cover 99% of the cases you will encounter.

Here is our test-case: the sequence of Mbp1, copied from the Genbank Webpage.

       1 msnqiysary sgvdvyefih stgsimkrkk ddwvnathil kaanfakakr trilekevlk
      61 ethekvqggf gkyqgtwvpl niakqlaekf svydqlkplf dftqtdgsas pppapkhhha
     121 skvdrkkair sastsaimet krnnkkaeen qfqsskilgn ptaaprkrgr pvgstrgsrr
     181 klgvnlqrsq sdmgfprpai pnssisttql psirstmgpq sptlgileee rhdsrqqqpq
     241 qnnsaqfkei dledglssdv epsqqlqqvf nqntgfvpqq qssliqtqqt esmatsvsss
     301 pslptspgdf adsnpfeerf pgggtspiis miprypvtsr pqtsdindkv nkylsklvdy
     361 fisnemksnk slpqvllhpp phsapyidap idpelhtafh wacsmgnlpi aealyeagts
     421 irstnsqgqt plmrsslfhn sytrrtfpri fqllhetvfd idsqsqtvih hivkrksttp
     481 savyyldvvl skikdfspqy rielllntqd kngdtalhia skngdvvffn tlvkmgaltt
     541 isnkegltan eimnqqyeqm miqngtnqhv nssntdlnih vntnnietkn dvnsmvimsp
     601 vspsdyityp sqiatnisrn ipnvvnsmkq masiyndlhe qhdneikslq ktlksisktk
     661 iqvslktlev lkesskdeng eaqtnddfei lsrlqeqntk klrkrliryk rlikqkleyr
     721 qtvllnklie detqattnnt vekdnntler lelaqeltml qlqrknklss lvkkfednak
     781 ihkyrriire gtemnieevd ssldvilqtl iannnknkga eqiitisnan sha
//


Task:
Navigate to http://regexpal.com and paste the sequence into the lower box. This site is one of a number of online regular expression testers; their immediate, visual feedback is invaluable when you are developing regular expression patterns.

Lets try some expressions:

Most characters are matched literally.
Type "a" in to the upper box and you will see all "a" characters matched. Then replace a with q.
Now type "aa" instead. Then krnnkk. Sequences of characters are also matched literally.
We can specify more than one character to match if we place it in square brackets.
[lq] matches l OR q. [familyvw] matches hydrophobic amino acids.
Within square brackets, we can specify "ranges".
[1-5] matches digits from 1 to 5.
Within square brackets, we can specify characters that should NOT be matched, with the caret, ^.
[^0-9] matches everything EXCEPT digits. [^a-z] matches everything that is not a lower-case letter. That's what we need (try it).

One of the R functions that uses regular expressions is the function gsub(). It replaces characters that match a "regex" with other characters. That is useful for our purpose: we can

  1. match all characters that are NOT a letter, and
  2. replace them by - nothing: the empty string "".

This deletes them.

Task:
Try this code:

seq <- "  # copy/paste from GenBank
        1 msnqiysary sgvdvyefih stgsimkrkk ddwvnathil kaanfakakr trilekevlk
       61 ethekvqggf gkyqgtwvpl niakqlaekf svydqlkplf dftqtdgsas pppapkhhha
      121 skvdrkkair sastsaimet krnnkkaeen qfqsskilgn ptaaprkrgr pvgstrgsrr
      181 klgvnlqrsq sdmgfprpai pnssisttql psirstmgpq sptlgileee rhdsrqqqpq
      241 qnnsaqfkei dledglssdv epsqqlqqvf nqntgfvpqq qssliqtqqt esmatsvsss
      301 pslptspgdf adsnpfeerf pgggtspiis miprypvtsr pqtsdindkv nkylsklvdy
      361 fisnemksnk slpqvllhpp phsapyidap idpelhtafh wacsmgnlpi aealyeagts
      421 irstnsqgqt plmrsslfhn sytrrtfpri fqllhetvfd idsqsqtvih hivkrksttp
      481 savyyldvvl skikdfspqy rielllntqd kngdtalhia skngdvvffn tlvkmgaltt
      541 isnkegltan eimnqqyeqm miqngtnqhv nssntdlnih vntnnietkn dvnsmvimsp
      601 vspsdyityp sqiatnisrn ipnvvnsmkq masiyndlhe qhdneikslq ktlksisktk
      661 iqvslktlev lkesskdeng eaqtnddfei lsrlqeqntk klrkrliryk rlikqkleyr
      721 qtvllnklie detqattnnt vekdnntler lelaqeltml qlqrknklss lvkkfednak
      781 ihkyrriire gtemnieevd ssldvilqtl iannnknkga eqiitisnan sha
 //
"

seq     # "\n" means: line-break

seq <- gsub("[^a-zA-Z]", "", seq) #replace all non-letters with ""

seq

# Now to change the sequence to upper-case. R has toupper()
# and tolower().

toupper(seq)

# Lets put this in a function:

sanitizeSequence <- function(s) {
	return(toupper(gsub("[^a-zA-Z]", "", s)))
}

# try it:

test <- "f123  a$^&&*)m. i	l马马虎虎 é yßv+w"
sanitizeSequence(test)

A Function to Set Values

Building on this function, we can write a function to set values in our protein table.

setDB <- function(database,
                  table,
                  id,
                  name = "",
                  refseq_id = "",
                  uniprot_id = "",
                  taxonomy_id = "",
                  genome_xref = "",
                  genome_from = "",
                  genome_to = "",
                  sequence = "",
                  species_name = "") {
    if (missing(database) | missing(table) | missing(id)) {
    	stop("database, table and id have to be specified")
    }
    if (table == "protein") {
    	row <- which(database$protein$id == id)
    	if (name != "") { database$protein[row, "name"] <- name } 
    	if (refseq_id != "") { database$protein[row, "refseq_id"] <- refseq_id} 
    	if (uniprot_id != "") { database$protein[row, "uniprot_id"] <- uniprot_id} 
    	if (taxonomy_id != "") { database$protein[row, "taxonomy_id"] <- taxonomy_id} 
    	if (genome_xref != "") { database$protein[row, "genome_xref"] <- genome_xref} 
    	if (genome_from != "") { database$protein[row, "genome_from"] <- genome_from} 
    	if (genome_to != "") { database$protein[row, "genome_to"] <- genome_to} 
    	if (sequence != "") { database$protein[row, "sequence"] <- sanitizeSequence(sequence)} 
    }
    if (table == "taxonomy") {
    	row <- which(database$taxonomy$id == id)
    	if (species_name != "") { database$taxonomy[row, "species_name"] <- species_name } 
    }
    return(database)
}

# Note that this code could be significantly improved: we are
# not doing any tests that the values are sane.
# But for now I just want to keep the code simple.



db$protein[1,]

db <- setDB(database = db, table="protein", id=1, name="Armadillo")
db$protein[1,]
db <- setDB(database = db, table="protein", id=1, name="Mbp1")

# With this, we can update our entries to set the sequence to its actual value.

seq

seq <- "
        1 msnqiysary sgvdvyefih stgsimkrkk ddwvnathil kaanfakakr trilekevlk
       61 ethekvqggf gkyqgtwvpl niakqlaekf svydqlkplf dftqtdgsas pppapkhhha
      121 skvdrkkair sastsaimet krnnkkaeen qfqsskilgn ptaaprkrgr pvgstrgsrr
      181 klgvnlqrsq sdmgfprpai pnssisttql psirstmgpq sptlgileee rhdsrqqqpq
      241 qnnsaqfkei dledglssdv epsqqlqqvf nqntgfvpqq qssliqtqqt esmatsvsss
      301 pslptspgdf adsnpfeerf pgggtspiis miprypvtsr pqtsdindkv nkylsklvdy
      361 fisnemksnk slpqvllhpp phsapyidap idpelhtafh wacsmgnlpi aealyeagts
      421 irstnsqgqt plmrsslfhn sytrrtfpri fqllhetvfd idsqsqtvih hivkrksttp
      481 savyyldvvl skikdfspqy rielllntqd kngdtalhia skngdvvffn tlvkmgaltt
      541 isnkegltan eimnqqyeqm miqngtnqhv nssntdlnih vntnnietkn dvnsmvimsp
      601 vspsdyityp sqiatnisrn ipnvvnsmkq masiyndlhe qhdneikslq ktlksisktk
      661 iqvslktlev lkesskdeng eaqtnddfei lsrlqeqntk klrkrliryk rlikqkleyr
      721 qtvllnklie detqattnnt vekdnntler lelaqeltml qlqrknklss lvkkfednak
      781 ihkyrriire gtemnieevd ssldvilqtl iannnknkga eqiitisnan sha
 //
"

db <- setDB(database = db, table="protein", id=1, sequence=seq)

seq <- "
        1 maprssavhv avysgvevye cfikgvsvmr rrrdswlnat qilkvadfdk pqrtrvlerq
       61 vqigahekvq ggygkyqgtw vpfqrgvdla tkykvdgims pilsldideg kaiapkkkqt
      121 kqkkpsvrgr rgrkpsslss stlhsvnekq pnssisptie ssmnkvnlpg aeeqvsatpl
      181 paspnallsp ndntikpvee lgmleapldk yeeslldffl hpeegripsf lyspppdfqv
      241 nsvidddght slhwacsmgh iemiklllra nadigvcnrl sqtplmrsvi ftnnydcqtf
      301 gqvlellqst iyavdtngqs ifhhivqsts tpskvaaaky yldcilekli siqpfenvvr
      361 lvnlqdsngd tslliaarng amdcvnslls ynanpsipnr qrrtaseyll eadkkphsll
      421 qsnsnashsa fsfsgispai ispscsshaf vkaipsissk fsqlaeeyes qlrekeedli
      481 ranrlkqdtl neisrtyqel tflqknnpty sqsmenlire aqetyqqlsk rlliwlearq
      541 ifdlerslkp htslsisfps dflkkedgls lnndfkkpac nnvtnsdeye qlinkltslq
      601 asrkkdtlyi rklyeelgid dtvnsyrrli amscginped lsleildave ealtrek
"
db <- setDB(database = db, table="protein", id=2, sequence=seq)


A Function to Add New Entries

The function to add a new entry to the database looks quite similar. But we have to add a test whether the species name has been entered when we add a species with a new taxonomy ID.

addToDB <- function(database,
                    name = "",
                    refseq_id = "",
                    uniprot_id = "",
                    taxonomy_id = "",
                    genome_xref = "",
                    genome_from = "",
                    genome_to = "",
                    sequence = "",
                    species_name = "") {
    if (missing(database) | missing(taxonomy_id)) {
    	stop("database and taxonomy_id have to be specified")
    }
    # handle taxonomy
    if (! any(database$taxonomy$id == taxonomy_id)) {  # new taxonomy_id
        if (missing(species_name)) {
    		stop("taxonomy_id is new: species_name has to be specified")
    	}
    	else {
    		# add this species to the taxonomy table
            database$taxonomy <- rbind(database$taxonomy,
                 data.frame(id = taxonomy_id,
                 species_name = species_name,
                 stringsAsFactors = FALSE))
    		
    	}
    }
    # handle protein
    # get a new protein id
    
    pid <- max(database$protein$id) + 1
    
    database$protein <- rbind(database$protein,
      data.frame(id = pid,
        name = name,
        refseq_id = refseq_id,
        uniprot_id = uniprot_id,
        taxonomy_id = taxonomy_id,
        genome_xref = genome_xref,
        genome_from = genome_from,
        genome_to = genome_to,
        sequence = sanitizeSequence(sequence),
        stringsAsFactors = FALSE))
        
    return(database)
}

# Test this.

newSeq <- "
        1 msgdktifka tysgvpvyec iinnvavmrr rsddwlnatq ilkvvgldkp qrtrvlerei
       61 qkgihekvqg gygkyqgtwi pldvaielae ryniqgllqp itsyvpsaad spppapkhti
      121 stsnrskkii padpgalgrs rratsietes evigaapnnv segsmspsps dissssrtps
      181 plpadrahpl hanhalagyn grdannhary adiildyfvt enttvpslli npppdfnpdm
      241 sidddehtal hwacamgrir vvklllsaga difrvnsnqq talmratmfs nnydlrkfpe
      301 lfellhrsil nidrndrtvf hhvvdlalsr gkphaaryym etminrlady gdqladilnf
      361 qddegetplt maararskrl vrlllehgad pkirnkegkn aedyiieder frsspsrtgp
      421 agielgadgl pvlptsslht seagqrtagr avtlmsnllh sladsydsei ntaekkltqa
      481 hgllkqiqte iedsakvaea lhheaqgvde erkrvdslql alkhainkra rddlerrwse
      541 gkqaikrarl qaglepgals tsnatnapat gdqkskddak sliealpagt nvktaiaelr
      601 kqlsqvqank telvdkfvar areqgtgrtm aayrrliaag cggiapdevd avvgvlcell
      661 qeshtgarag aggerddrar dvammlkgag aaalaanaga p
"

db2 <- addToDB(db,
            name = "UMAG_1122",
            refseq_id = "XP_011392621",
            uniprot_id = "A0A0D1DP35",
            taxonomy_id = 5270,
            genome_xref = "NC_026499.1",
            genome_from = 150555,
            genome_to = 152739,
            sequence = newSeq,
            species_name = "Ustilago maydis")

As you can see, adding a new protein to our database is now rather compact.

Add Your YFO Sequence

Task:
In the last assignment, you discovered a protein via BLAST that is related to yeast Mbp1 in YFO. (If you haven't noted its ID in your journal, you'll have to redo the BLAST search.)

Add that protein to the database. Ask on the mailing list if you don't know how (but be specific) or if you don't know how to find particular information items.

Check that the protein has been properly added to all columns.


 

Analyze

Let us perform a few simple sequence analyses using the online EMBOSS tools. EMBOSS (the European Molecular Biology laboratory Open Software Suite) combines a large number of simple but fundamental sequence analysis tools. The tools can be installed locally on your own machine, or run via a public Web interface. Google for EMBOSS explorer, public access points include http://emboss.bioinformatics.nl/ .

Access an EMBOSS Explorer services and explore some of the tools:


Task:

Local composition
  1. Find pepinfo under the PROTEIN COMPOSITION heading.
  2. Retrieve the YFO Mbp1 related sequence from your R database, e.g. with something like db$protein[db$protein$name == "UMAG_1122", "sequence"]
  3. Copy and paste the sequence into the input field.
  4. Run with default parameters.
  5. Scroll to the figures all the way at the bottom.
  6. Do the same in a separate window for yeast Mbp1.
  7. Try to compare ... (kind of hard without reference, overlay and expectation, isn't it?)


Task:

Global composition
  1. Find pepstats under the PROTEIN COMPOSITION heading.
  2. Paste the YFO Mbp1 sequence in FASTA format into the input field.
  3. Run with default parameters.
  4. Do the same in a separate window for yeast Mbp1.
  5. Try to compare ... are there significant and unexpected differences?


Task:

Motifs
  1. Find pepcoils, an algorithm to detect coiled coil motifs.
  2. Run this with the YFO Mbp1 sequence and yeast Mbp1.
  3. Try to compare ... do both sequences have coiled-coil motif predictions? Are they annotated in approximately comparable regions of the respective sequence?


Task:

Transmembrane sequences
  1. Find tmap. Also find shuffleseq.
  2. Use your YFO sequence to annotate transmembrane helices for your protein and for a few shuffled sequences. The YFO is not expected to have TM helices, nor are the shuffled sequences expected to have any. If you do find some, these are most likely "false positives".
  1. Also compare the following positive control: Gef1 - a yeast chloride channel with 10 trans-membrane helices and outward localized N-terminus:
>gi|6322500|ref|NP_012574.1| Gef1p [Saccharomyces cerevisiae S288c]
MPTTYVPINQPIGDGEDVIDTNRFTNIPETQNFDQFVTIDKIAEENRPLSVDSDREFLNSKYRHYREVIW
DRAKTFITLSSTAIVIGCIAGFLQVFTETLVNWKTGHCQRNWLLNKSFCCNGVVNEVTSTSNLLLKRQEF
ECEAQGLWIAWKGHVSPFIIFMLLSVLFALISTLLVKYVAPMATGSGISEIKVWVSGFEYNKEFLGFLTL
VIKSVALPLAISSGLSVGKEGPSVHYATCCGYLLTKWLLRDTLTYSSQYEYITAASGAGVAVAFGAPIGG
VLFGLEEIASANRFNSSTLWKSYYVALVAITTLKYIDPFRNGRVILFNVTYDRDWKVQEIPIFIALGIFG
GLYGKYISKWNINFIHFRKMYLSSWPVQEVLFLATLTALISYFNEFLKLDMTESMGILFHECVKNDNTST
FSHRLCQLDENTHAFEFLKIFTSLCFATVIRALLVVVSYGARVPAGIFVPSMAVGATFGRAVSLLVERFI
SGPSVITPGAYAFLGAAATLSGITNLTLTVVVIMFELTGAFMYIIPLMIVVAITRIILSTSGISGGIADQ
MIMVNGFPYLEDEQDEEEEETLEKYTAEQLMSSKLITINETIYLSELESLLYDSASEYSVHGFPITKDED
KFEKEKRCIGYVLKRHLASKIMMQSVNSTKAQTTLVYFNKSNEELGHRENCIGFKDIMNESPISVKKAVP
VTLLFRMFKELGCKTIIVEESGILKGLVTAKDILRFKRIKYREVHGAKFTYNEALDRRCWSVIHFIIKRF
TTNRNGNVI
  1. Evaluate the output: does the algorithm (wrongly) predict TM-helices in your protein? In the shuffled sequences? Does it find all ten TM-helices in Gef1?


Try to familiarize yourself with the offerings in the EMBOSS package. I find some of the nucleic acid tools indispensable in the lab, such as restriction-site mapping tools, and I frequently use the alignment tools Needle and Water, but by and large the utility of many of the components–while fast, efficient and straightforward to use– suffers from lack of reference and comparison and from terse output. The routines show their conceptual origin in the 1970s and 1980s. We will encounter alternatives in later assignments.


 

R Sequence Analysis Tools

It's interesting to see this collection of tools that were carefully designed some twenty years ago, as an open source replacement for a set of software tools - the GCG package - that was indispensable for molecular biology labs in the 80s and 90s, but whose cost had become prohibitive. Fundamentally this is a building block approach, and the field has turned to programming solutions instead.

As for functionality, much more sophisticated functions are available on the Web: do take a few minutes and browse the curated Web services directory of bioinformatics.ca.

As for versatility, R certainly has the edge. Let's explore some of the functions available in the seqinr package that you already encountered in the introductory R tutorial. They are comparatively basic - but it is easy to prepare our own analysis.

if (!require(seqinr, quietly=TRUE)) {
	install.packages("seqinr")
	library(seqinr)
}

help(package = seqinr) # shows the available functions

# Let's try a simple function
?computePI

# This takes as input a vector of upper-case AA codes
# Let's retrieve the YFO sequence from our datamodel
# (assuming it is the last one that was added):

db$protein[nrow(db$protein), "sequence"]

# We can use the function strsplit() to split the string
# into single characters, but we transform the sequence
# into uppercase first.

s <- db$protein[nrow(db$protein), "sequence"]
s <- toupper(s)
s <- strsplit(s, "") # splitting on the empty spring
                     # splits into single characters
s <- unlist(s)

# Alternatively, seqinr provides
# the function s2c() to convert strings into
# character vectors (and c2s to convert them back).

s <- s2c(toupper(db$protein[nrow(db$protein), "sequence"]))
s

computePI(s)  # isoelectric point
pmw(s)        # molecular weight
AAstat(s)     # This also plots the distribution of 
              # values along the sequence

# A true Labor of Love has gone into the
# compilation of the "aaindex" data:

?aaindex
data(aaindex)

length(aaindex)

# Here are all the index descriptions
for (i in 1:length(aaindex)) {
	cat(paste(i, ": ", aaindex[[i]]$D, "\n", sep=""))
}


# Lets use one of the indices to calculate and plot amino-acid
# composition enrichment: 
aaindex[[459]]

<source>


=== Sequence Composition Enrichment ===

We will plot an enrichment plot to compare one of the amino acid indices with the
situation in our sequence.

<source lang="R">

refData <- aaindex[[459]]$I   # reference frequencies in %
names(refData) <- a(names(refData))  # change names to single-letter
                                     # code using seqinr's "a()" function
refData


# tabulate our sequence of interest and normalize
obsData <- table(s)                # count occurrences
obsData = 100 * (obsData / sum(obsData))   # Normalize
obsData

len <- length(refData)

logRatio <- numeric() # create an empty vector

# loop over all elements of the reference, calculate log-ratios
# and store them in the vector
for (i in 1:len) {
	aa <- names(refData)[i] # get the name of that amino acid
	fObs <- obsData[aa]  # retrieve the frequency for that name
	fRef <- refData[aa]
	logRatio[aa] <- log(fObs / fRef) / log(2)
}

barplot(logRatio)



# Sort by frequency, descending
logRatio <- sort(logRatio, decreasing = TRUE)  
 
barplot(logRatio)



# label the y-axis
# (see text() for details)
label <- expression(paste(log[2],"( f(obs) / f(ref) )", sep = ""))

barplot(logRatio, 
        main = paste("AA composition enrichment"),
        ylab = label, 
        cex.names=0.9)



# color the bars by type 
# define colors
chargePlus  <- "#282A3F"
chargeMinus <- "#531523"
hydrophilic <- "#47707F"
hydrophobic <- "#6F7A79"
plain       <- "#EDF7F7"
  
# Assign the colors to the different amino acid names
barColors <- character(len)

for (i in 1:length(refData)) {
	AA <- names(logRatio[i])
         if (grepl("[HKR]",      AA)) {barColors[i] <- chargePlus }
    else if (grepl("[DE]",       AA)) {barColors[i] <- chargeMinus}
    else if (grepl("[NQST]",     AA)) {barColors[i] <- hydrophilic}
    else if (grepl("[FAMILYVW]", AA)) {barColors[i] <- hydrophobic}
    else                               barColors[i] <- plain
}

barplot(logRatio, 
        main = paste("AA composition enrichment"),
        ylab = label, 
        col = barColors, 
        cex.names=0.9)


# draw a line at 0
abline(h=0)
 
# add a legend that indicates what the colours mean
legend (x = 1,
        y = -1,
        legend = c("charged (+)",
                   "charged (-)",
                   "hydrophilic",
                   "hydrophobic",
                   "plain"),
        bty = "n",
        fill = c(chargePlus,
                 chargeMinus,
                 hydrophilic,
                 hydrophobic, 
                 plain)
        )

Task:
Interpret this plot. (Can you?)


 


That is all.


 

Links and resources

  • RegEx Pal - a tool for testing and developing regular expressions.


 


Footnotes and references


 

Ask, if things don't work for you!

If anything about the assignment is not clear to you, please ask on the mailing list. You can be certain that others will have had similar problems. Success comes from joining the conversation.



< Assignment 2 Assignment 4 >