Difference between revisions of "Assignment 6"
Line 16: | Line 16: | ||
<div style="padding: 2px; background: #F0F1F7; border:solid 1px #AAAAAA; font-size:125%;color:#444444"> | <div style="padding: 2px; background: #F0F1F7; border:solid 1px #AAAAAA; font-size:125%;color:#444444"> | ||
Introduction | Introduction | ||
+ | ; A theory can be proved by an experiment; but no path leads from experiment to the birth of a theory. | ||
+ | :''<small>(Variously attributed to Albert Einstein and Manfred Eigen)</small>'' | ||
+ | |||
</div> | </div> | ||
− | + | Systems biology is about '''systems''' ... but what is a system, anyway? Definitions abound, the recurring theme is that of connected "components" forming a complex "whole". Complexity describes the phenomenon that properties of components can depend on the "context" of a component; the context is the entire system. That fact that it can be meaningful to treat such a set of components in isolation, dissociated from their other environment, tells us that not all components of biology are connected to the same degree. Some have many, strong, constant interactions (often these are what we refer to "systems"), others have few, weak, sporadic interactions and thus can often be dissociated in analysis. Given the fact that complex biological components can be perturbed by any number of generic environmental influences as well as specific modulating interactions, it is non-trivial to observe that we '''can'' in many cases isolate some components or sets of components and study them in a meaningful way. A useful mental image is that of clustering in datasets: even if we can clearly define a cluster as a number of elements that are strongly connected to each other, that usually still means some of these elements also have some connections with elements from other clusters. Moreover, our concepts of systems is often hierarchical, discussing biological phenomena in terms of entities or components, subsystems, systems, supersystems ..., as well it often focusses on particular dimensions of connectedness, such as physical contact, in the study of complexes, material transformations, in the study of metabolic systems, or information flow, in the study of signalling systems and their higher-order assemblies in control and development. | |
+ | |||
+ | At the end of the day, a biological system is a '''conceptual''' construct, a model we use to make sense of nature; nature however, ever pragmatical, knows nothing of systems. | ||
+ | |||
+ | In this sense systems biology could be dismissed as an artificial academic exercise, semantics, even molecular Mysticism, if you will (and some experimentalists do take this position), '''IF''' systems biology were not curiously successful in its predictions. For example, we all know that metabolism is a network, crosslinked at every opportunity; still, the concept of pathways appears to correlate with real, observable properties of substrate flow in living cellls. Nature appears to prefer constructing components that interact locally, complexes, modeules and systems, in a way that encapsulates their complex behaviour, rather than leaving them free to interact randomly with any other number of components in a large, disordered bag. | ||
+ | |||
+ | The mental construct of a "system" thus provides a theory of the functional organisation of biological components. | ||
+ | |||
+ | In this assignment we will briefly explore two of the tools that are currently in common use to map molecular observations to integrated systems concepts and consider how complete that mapping currently is. | ||
<div style="padding: 2px; background: #F0F1F7; border:solid 1px #AAAAAA; font-size:125%;color:#444444"> | <div style="padding: 2px; background: #F0F1F7; border:solid 1px #AAAAAA; font-size:125%;color:#444444"> |
Revision as of 15:45, 6 December 2006
Contents
Assignment 6 - Patterns, Regulons and Systems
Please note: This assignment is currently inactive. Unannounced changes may be made at any time.
Introduction
- A theory can be proved by an experiment; but no path leads from experiment to the birth of a theory.
- (Variously attributed to Albert Einstein and Manfred Eigen)
Systems biology is about systems' ... but what is a system, anyway? Definitions abound, the recurring theme is that of connected "components" forming a complex "whole". Complexity describes the phenomenon that properties of components can depend on the "context" of a component; the context is the entire system. That fact that it can be meaningful to treat such a set of components in isolation, dissociated from their other environment, tells us that not all components of biology are connected to the same degree. Some have many, strong, constant interactions (often these are what we refer to "systems"), others have few, weak, sporadic interactions and thus can often be dissociated in analysis. Given the fact that complex biological components can be perturbed by any number of generic environmental influences as well as specific modulating interactions, it is non-trivial to observe that we can in many cases isolate some components or sets of components and study them in a meaningful way. A useful mental image is that of clustering in datasets: even if we can clearly define a cluster as a number of elements that are strongly connected to each other, that usually still means some of these elements also have some connections with elements from other clusters. Moreover, our concepts of systems is often hierarchical, discussing biological phenomena in terms of entities or components, subsystems, systems, supersystems ..., as well it often focusses on particular dimensions of connectedness, such as physical contact, in the study of complexes, material transformations, in the study of metabolic systems, or information flow, in the study of signalling systems and their higher-order assemblies in control and development.
At the end of the day, a biological system is a conceptual construct, a model we use to make sense of nature; nature however, ever pragmatical, knows nothing of systems.
In this sense systems biology could be dismissed as an artificial academic exercise, semantics, even molecular Mysticism, if you will (and some experimentalists do take this position), IF systems biology were not curiously successful in its predictions. For example, we all know that metabolism is a network, crosslinked at every opportunity; still, the concept of pathways appears to correlate with real, observable properties of substrate flow in living cellls. Nature appears to prefer constructing components that interact locally, complexes, modeules and systems, in a way that encapsulates their complex behaviour, rather than leaving them free to interact randomly with any other number of components in a large, disordered bag.
The mental construct of a "system" thus provides a theory of the functional organisation of biological components.
In this assignment we will briefly explore two of the tools that are currently in common use to map molecular observations to integrated systems concepts and consider how complete that mapping currently is.
Preparation, submission and due date
Read carefully....
Prepare a Microsoft Word document with a title page that contains:
- your full name
- your Student ID
- your e-mail address
- the organism name you have been assigned (see below)
Follow the steps outlined below. You are encouraged to write your answers in short answer form or point form, like you would document an analysis in a laboratory notebook. However, you must
- document what you have done,
- note what Web sites and tools you have used,
- paste important data sequences, alignments, information etc.
If you do not document the process of your work, we will deduct marks. Try to be concise, not wordy! Use your judgement: are you giving us enough information so we could exactly reproduce what you have done? If not, we will deduct marks. Avoid RTF and unnecessary formating. Do not paste screendumps. Keep the size of your submission below 1.5 MB.
Write your answers into separate paragraphs and give each its title. Save your document with a filename of:
A3_family name.given name.doc
(for example my first assignment would be named: A3_steipe.boris.doc - and don't switch the order of your given name and familyname please!)
Finally e-mail the document to [boris.steipe@utoronto.ca] before the due date.
Your document must not contain macros. Please turn off and/or remove all macros from your Word document; we will disable macros, since they pose a security risk.
With the number of students in the course, we have to economize on processing the assignments. Thus we will not accept assignments that are not prepared as described above. If you have technical difficulties, contact me.
The due date for the assignment is XXXXX at 10:00 in the morning.
Grading
Don't wait until the last day to find out there are problems! Assignments that are received past the due date will have one mark deducted at the first minute of every twelve hour period past the due date. Assignments received more than 5 days past the due date will not be assessed.
Marks are noted below in the section headings for of the tasks. A total of 10 marks will be awarded, if your assignment answers all of the questions. A total of 2 bonus marks (up to a maximum of 10 overall) can be awarded for particularily interesting findings, or insightful comments. A total of 2 marks can be subtracted for lack of form or for glaring errors. The marks you receive will
- count directly towards your final marks at the end of term, for BCH441 (undergraduates), or
- be divided by two for BCH1441 (graduates).
SECTION Heading
SUB section Heading (X marks)
Instruction
- Task
Instruction
- Task.
SECTION Heading
SUB section Heading (X marks)
Instruction
- Task
Instruction
- Task.
[End of assignment]
If you have any questions at all, don't hesitate to mail me at boris.steipe@utoronto.ca or post your question to the Course Mailing List