Difference between revisions of "BIN-FUNC-Concepts"
m |
m |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <div id=" | + | <div id="ABC"> |
− | + | <div style="padding:5px; border:1px solid #000000; background-color:#b3dbce; font-size:300%; font-weight:400; color: #000000; width:100%;"> | |
Biomolecular Function Concepts | Biomolecular Function Concepts | ||
− | + | <div style="padding:5px; margin-top:20px; margin-bottom:10px; background-color:#b3dbce; font-size:30%; font-weight:200; color: #000000; "> | |
− | + | (The concept of function, representation of function, annotation, and prediction.) | |
− | + | </div> | |
− | |||
− | <div | ||
− | |||
− | The concept of function, function | ||
</div> | </div> | ||
− | {{ | + | {{Smallvspace}} |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <div style="padding:5px; border:1px solid #000000; background-color:#b3dbce33; font-size:85%;"> | ||
+ | <div style="font-size:118%;"> | ||
+ | <b>Abstract:</b><br /> | ||
+ | <section begin=abstract /> | ||
+ | Function is a ''concept'', not an observation and it is not trivial how we categorize and arrange observed activities to "functions". Once defined, functions need to be represented in the computer, associated with biomolecules through annotation, and used in prediction to complement experimentation. | ||
+ | <section end=abstract /> | ||
</div> | </div> | ||
− | < | + | <!-- ============================ --> |
− | == | + | <hr> |
− | < | + | <table> |
− | ... | + | <tr> |
− | + | <td style="padding:10px;"> | |
− | + | <b>Objectives:</b><br /> | |
− | + | This unit will ... | |
− | + | * Introduce the meaning of "function" and issues that arise from it being a concept, not an observable; | |
− | == | + | * Introduce principles of representation, annotation and prediction of biomolecular function. |
− | === | + | </td> |
− | < | + | <td style="padding:10px;"> |
− | <!-- | + | <b>Outcomes:</b><br /> |
− | You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources: | + | After working through this unit you ... |
− | < | + | * understand how observed activities are conceptualized as "functions" on various levels; |
− | + | * know about three common resources for function representation: E.C. codes, pathway collections, and above all, the Gene Ontology project; | |
+ | * can name the three fundamental strategies for function prediction and give one example for each. | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <!-- ============================ --> | ||
+ | <hr> | ||
+ | <b>Deliverables:</b><br /> | ||
+ | <section begin=deliverables /> | ||
+ | <li><b>Time management</b>: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.</li> | ||
+ | <li><b>Journal</b>: Document your progress in your [[FND-Journal|Course Journal]]. Some tasks may ask you to include specific items in your journal. Don't overlook these.</li> | ||
+ | <li><b>Insights</b>: If you find something particularly noteworthy about this unit, make a note in your [[ABC-Insights|'''insights!''' page]].</li> | ||
+ | <section end=deliverables /> | ||
+ | <!-- ============================ --> | ||
+ | <hr> | ||
+ | <section begin=prerequisites /> | ||
+ | <b>Prerequisites:</b><br /> | ||
+ | You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:<br /> | ||
*<b>Biomolecules</b>: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function. | *<b>Biomolecules</b>: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function. | ||
− | |||
*<b>Metabolism</b>: Enzymatic catalysis and control; reaction sequences and pathways; chemiosmotic coupling; catabolic- and anabolic pathways. | *<b>Metabolism</b>: Enzymatic catalysis and control; reaction sequences and pathways; chemiosmotic coupling; catabolic- and anabolic pathways. | ||
− | |||
*<b>Organelles</b>: Compartmentalization, organelles and structures of the cell; the extracellular matrix. | *<b>Organelles</b>: Compartmentalization, organelles and structures of the cell; the extracellular matrix. | ||
− | + | This unit builds on material covered in the following prerequisite units:<br /> | |
− | + | *[[BIN-Abstractions|BIN-Abstractions (Abstractions for Bioinformatics)]] | |
− | *[[BIN-Abstractions]] | + | <section end=prerequisites /> |
+ | <!-- ============================ --> | ||
+ | </div> | ||
− | {{ | + | {{Smallvspace}} |
− | |||
− | |||
− | |||
− | {{ | + | {{Smallvspace}} |
− | + | __TOC__ | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Vspace}} | {{Vspace}} | ||
Line 79: | Line 71: | ||
=== Evaluation === | === Evaluation === | ||
− | |||
− | |||
<b>Evaluation: NA</b><br /> | <b>Evaluation: NA</b><br /> | ||
− | :This unit is not evaluated for course marks. | + | <div style="margin-left: 2rem;">This unit is not evaluated for course marks.</div> |
− | |||
− | |||
− | |||
− | |||
− | </div | ||
− | |||
== Contents == | == Contents == | ||
− | |||
{{Task|1= | {{Task|1= | ||
Line 100: | Line 83: | ||
{{Vspace}} | {{Vspace}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<div class="about"> | <div class="about"> | ||
Line 165: | Line 92: | ||
:2017-08-05 | :2017-08-05 | ||
<b>Modified:</b><br /> | <b>Modified:</b><br /> | ||
− | : | + | :2020-09-23 |
<b>Version:</b><br /> | <b>Version:</b><br /> | ||
− | : | + | :1.1 |
<b>Version history:</b><br /> | <b>Version history:</b><br /> | ||
+ | *1.1 2020 Maintenance | ||
+ | *1.0 First final version | ||
*0.1 First stub | *0.1 First stub | ||
</div> | </div> | ||
− | |||
− | |||
{{CC-BY}} | {{CC-BY}} | ||
+ | [[Category:ABC-units]] | ||
+ | {{UNIT}} | ||
+ | {{LIVE}} | ||
</div> | </div> | ||
<!-- [END] --> | <!-- [END] --> |
Latest revision as of 08:51, 24 September 2020
Biomolecular Function Concepts
(The concept of function, representation of function, annotation, and prediction.)
Abstract:
Function is a concept, not an observation and it is not trivial how we categorize and arrange observed activities to "functions". Once defined, functions need to be represented in the computer, associated with biomolecules through annotation, and used in prediction to complement experimentation.
Objectives:
|
Outcomes:
|
Deliverables:
Prerequisites:
You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:
- Biomolecules: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function.
- Metabolism: Enzymatic catalysis and control; reaction sequences and pathways; chemiosmotic coupling; catabolic- and anabolic pathways.
- Organelles: Compartmentalization, organelles and structures of the cell; the extracellular matrix.
This unit builds on material covered in the following prerequisite units:
Contents
Evaluation
Evaluation: NA
Contents
Task:
- Read the introductory notes on the concepts and abstractions for annotating gene function.
About ...
Author:
- Boris Steipe <boris.steipe@utoronto.ca>
Created:
- 2017-08-05
Modified:
- 2020-09-23
Version:
- 1.1
Version history:
- 1.1 2020 Maintenance
- 1.0 First final version
- 0.1 First stub
This copyrighted material is licensed under a Creative Commons Attribution 4.0 International License. Follow the link to learn more.