Difference between revisions of "De novo structure prediction"

From "A B C"
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<div id="BIO">
 
<div id="BIO">
 
<div class="b1">
 
<div class="b1">
''ab initio'' Structure Prediction
+
''De novo'' Structure Prediction and Design
 
</div>
 
</div>
  
Line 25: Line 25:
  
 
&nbsp;
 
&nbsp;
==Contents==
+
==The problem==
 +
...
  
 +
 +
&nbsp;
 +
==Prediction==
 +
...
 +
 +
 +
&nbsp;
 +
===Forcefield based approaches===
 +
{{#pmid: 20947758}}
 +
{{#pmid: 23237705}}
 +
 +
&nbsp;
 +
===Template based approaches===
 +
...
 +
 +
;Rosetta
 +
:...
 +
 +
 +
;TASSER
 +
:...
 +
 +
 +
&nbsp;
 +
===Covariation based approaches===
 +
 +
{{#pmid: 23138306}}
 +
<div class="reference-box">[http://evfold.org/evfold-web/evfold.do '''EVfold Web server''']</div>
 +
 +
http://evfold.org/evfold-web/evfold.do
 +
 +
 +
&nbsp;
 +
==Design==
 +
{{#pmid: 24005320}}
 +
{{#pmid: 24005323}}
 +
 +
 +
{{#pmid: 23422429}}
  
 
&nbsp;
 
&nbsp;
Line 43: Line 83:
 
&nbsp;
 
&nbsp;
 
==Further reading and resources==
 
==Further reading and resources==
 +
 
<div class="reference-box">[http://fold.it/portal/ FoldIt]</div>
 
<div class="reference-box">[http://fold.it/portal/ FoldIt]</div>
 
<div class="reference-box">[http://zhanglab.ccmb.med.umich.edu/ Zhang Lab (UMich)]</div>
 
<div class="reference-box">[http://zhanglab.ccmb.med.umich.edu/ Zhang Lab (UMich)]</div>
 
<div class="reference-box">[http://depts.washington.edu/bakerpg/drupal/ Baker Lab (UWash)]</div>
 
<div class="reference-box">[http://depts.washington.edu/bakerpg/drupal/ Baker Lab (UWash)]</div>
  
 +
----
  
 
<div class="reference-box">[http://www.springerlink.com/content/978-1-58829-752-5/ Springer: Protein Structure Prediction (2008)]</div>
 
<div class="reference-box">[http://www.springerlink.com/content/978-1-58829-752-5/ Springer: Protein Structure Prediction (2008)]</div>
  
 
+
----
 +
{{#pmid: 23760925}}
 +
{{#pmid: 23138306}}
 +
{{#pmid: 22579045}}
 +
{{#pmid: 22361291}}
 
{{PDF
 
{{PDF
 
|authors= Ambrish, R. & Zhang, Y.
 
|authors= Ambrish, R. & Zhang, Y.
Line 63: Line 109:
 
|abstract= The goal of protein structure prediction is to estimate the spatial position of every atom of protein molecules from the amino acid sequence by computational methods. Depending on the availability of homologous templates in the PDB library, structure prediction approaches are categorised into template-based modelling (TBM) and free modelling (FM). While TBM is by far the only reliable method for high-resolution structure prediction, challenges in the field include constructing the correct folds without using template structures and refining the template models closer to the native state when templates are available. Nevertheless, the usefulness of various levels of protein structure predictions have been convincingly demonstrated in biological and medical applications.
 
|abstract= The goal of protein structure prediction is to estimate the spatial position of every atom of protein molecules from the amino acid sequence by computational methods. Depending on the availability of homologous templates in the PDB library, structure prediction approaches are categorised into template-based modelling (TBM) and free modelling (FM). While TBM is by far the only reliable method for high-resolution structure prediction, challenges in the field include constructing the correct folds without using template structures and refining the template models closer to the native state when templates are available. Nevertheless, the usefulness of various levels of protein structure predictions have been convincingly demonstrated in biological and medical applications.
 
}}
 
}}
 +
{{#pmid: 22163331}}
 
{{#pmid: 22106262}}  
 
{{#pmid: 22106262}}  
{{#pmid: 22163331}}  
+
{{#pmid: 19247286}}
{{#pmid: 22579045}}  
+
{{#pmid: 15693735}}
{{#pmid: 23138306}}  
+
 
 +
;Lattice models
 +
{{#pmid: 19344476}}  
 +
 
 +
 
 +
;Optimization
 +
{{#pmid: 22821798}}
 +
 
 +
 
  
  

Latest revision as of 22:34, 15 November 2014

De novo Structure Prediction and Design


This page is a placeholder, or under current development; it is here principally to establish the logical framework of the site. The material on this page is correct, but incomplete.


Protein structure prediction


Summary ...



 

The problem

...


 

Prediction

...


 

Forcefield based approaches

Shaw et al. (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341-6. (pmid: 20947758)

PubMed ] [ DOI ]

Lane et al. (2013) To milliseconds and beyond: challenges in the simulation of protein folding. Curr Opin Struct Biol 23:58-65. (pmid: 23237705)

PubMed ] [ DOI ]

 

Template based approaches

...

Rosetta
...


TASSER
...


 

Covariation based approaches

Marks et al. (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072-80. (pmid: 23138306)

PubMed ] [ DOI ]

http://evfold.org/evfold-web/evfold.do


 

Design

Tinberg et al. (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501:212-216. (pmid: 24005320)

PubMed ] [ DOI ]

Ghirlanda (2013) Computational biology: A recipe for ligand-binding proteins. Nature 501:177-8. (pmid: 24005323)

PubMed ] [ DOI ]


Kiss et al. (2013) Molecular dynamics simulations for the ranking, evaluation, and refinement of computationally designed proteins. Meth Enzymol 523:145-70. (pmid: 23422429)

PubMed ] [ DOI ]

   

Further reading and resources



Zhang (2014) Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins 82 Suppl 2:175-87. (pmid: 23760925)

PubMed ] [ DOI ]

Marks et al. (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072-80. (pmid: 23138306)

PubMed ] [ DOI ]

Hopf et al. (2012) Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149:1607-21. (pmid: 22579045)

PubMed ] [ DOI ]

Cruz et al. (2012) RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18:610-25. (pmid: 22361291)

PubMed ] [ DOI ]

Ambrish, R. & Zhang, Y. (2012) Protein Structure Prediction. Encyclopedia of Life Sciences 
(pmid: None)Source URL ]
Marks et al. (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6:e28766. (pmid: 22163331)

PubMed ] [ DOI ]

Morcos et al. (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U.S.A 108:E1293-301. (pmid: 22106262)

PubMed ] [ DOI ]

Kelley & Sternberg (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363-71. (pmid: 19247286)

PubMed ] [ DOI ]

Bystroff et al. (2004) Five hierarchical levels of sequence-structure correlation in proteins. Appl Bioinformatics 3:97-104. (pmid: 15693735)

PubMed ] [ DOI ]

Lattice models
Chan & Zhang (2009) Liaison amid disorder: non-native interactions may underpin long-range coupling in proteins. J Biol 8:27. (pmid: 19344476)

PubMed ] [ DOI ]


Optimization
Hallen et al. (2013) Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins 81:18-39. (pmid: 22821798)

PubMed ] [ DOI ]