Difference between revisions of "FND-STA-Probability distribution"
m |
m |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <div id=" | + | <div id="ABC"> |
− | + | <div style="padding:5px; border:1px solid #000000; background-color:#b3dbce; font-size:300%; font-weight:400; color: #000000; width:100%;"> | |
Probability Distribution | Probability Distribution | ||
− | + | <div style="padding:5px; margin-top:20px; margin-bottom:10px; background-color:#b3dbce; font-size:30%; font-weight:200; color: #000000; "> | |
− | + | (Nature of a probability distribution, important distributions, comparing observed and simulated probability distributions, Kullback-Leibler divergence, the Kolmogorov-Smirnov test.) | |
− | + | </div> | |
− | |||
− | <div | ||
− | |||
− | Nature of a probability distribution, important distributions, comparing observed and simulated probability distributions, Kullback-Leibler | ||
</div> | </div> | ||
− | {{ | + | {{Smallvspace}} |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <div style="padding:5px; border:1px solid #000000; background-color:#b3dbce33; font-size:85%;"> | |
− | + | <div style="font-size:118%;"> | |
− | + | <b>Abstract:</b><br /> | |
− | < | ||
− | <div | ||
− | |||
<section begin=abstract /> | <section begin=abstract /> | ||
− | |||
Probability distributions are at the core of any statistical analysis, in which modelled distributions are compared with sampled distributions to relate an observation to our theoretical understanding. This unit introduces the principles, discusses Poisson, uniform, and normal distributions, and presents methods to compare distributions with each other and quantify the difference. | Probability distributions are at the core of any statistical analysis, in which modelled distributions are compared with sampled distributions to relate an observation to our theoretical understanding. This unit introduces the principles, discusses Poisson, uniform, and normal distributions, and presents methods to compare distributions with each other and quantify the difference. | ||
<section end=abstract /> | <section end=abstract /> | ||
− | + | </div> | |
− | + | <!-- ============================ --> | |
− | + | <hr> | |
− | + | <table> | |
− | == | + | <tr> |
− | === | + | <td style="padding:10px;"> |
− | < | + | <b>Objectives:</b><br /> |
− | < | ||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
This unit will ... | This unit will ... | ||
* ... introduce basic concepts of probability distributions; | * ... introduce basic concepts of probability distributions; | ||
* ... demonstrate the Poisson, the uniform, and the normal distribution; | * ... demonstrate the Poisson, the uniform, and the normal distribution; | ||
* ... teach how to visually and quantitatively compare them. | * ... teach how to visually and quantitatively compare them. | ||
− | + | </td> | |
− | + | <td style="padding:10px;"> | |
− | + | <b>Outcomes:</b><br /> | |
− | |||
− | |||
− | < | ||
After working through this unit you ... | After working through this unit you ... | ||
* ... can interpret observed events in terms of probability distributions; | * ... can interpret observed events in terms of probability distributions; | ||
Line 67: | Line 36: | ||
* ... can compare observed distributions against each other with <code>qqplot()</code>. | * ... can compare observed distributions against each other with <code>qqplot()</code>. | ||
* ... can use Kullback-Leibler divergence for discrete distributions, and <code>ks.test()</code> for continuous distributions to quantify differences. | * ... can use Kullback-Leibler divergence for discrete distributions, and <code>ks.test()</code> for continuous distributions to quantify differences. | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <!-- ============================ --> | ||
+ | <hr> | ||
+ | <b>Deliverables:</b><br /> | ||
+ | <section begin=deliverables /> | ||
+ | <li><b>Time management</b>: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.</li> | ||
+ | <li><b>Journal</b>: Document your progress in your [[FND-Journal|Course Journal]]. Some tasks may ask you to include specific items in your journal. Don't overlook these.</li> | ||
+ | <li><b>Insights</b>: If you find something particularly noteworthy about this unit, make a note in your [[ABC-Insights|'''insights!''' page]].</li> | ||
+ | <section end=deliverables /> | ||
+ | <!-- ============================ --> | ||
+ | <hr> | ||
+ | <section begin=prerequisites /> | ||
+ | <b>Prerequisites:</b><br /> | ||
+ | You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:<br /> | ||
+ | *<b>Calculus</b>: functions and equations; polynomial functions, logarithms, trigonometric functions; integrals and derivatives; theorem and proof. | ||
+ | This unit builds on material covered in the following prerequisite units:<br /> | ||
+ | *[[FND-STA-Probability|FND-STA-Probability (Probability)]] | ||
+ | <section end=prerequisites /> | ||
+ | <!-- ============================ --> | ||
+ | </div> | ||
− | {{ | + | {{Smallvspace}} |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {{ | + | {{Smallvspace}} |
− | + | __TOC__ | |
− | |||
− | |||
− | |||
− | |||
{{Vspace}} | {{Vspace}} | ||
− | </ | + | === Evaluation === |
− | <div | + | <b>Evaluation: NA</b><br /> |
+ | <div style="margin-left: 2rem;">This unit is not evaluated for course marks.</div> | ||
== Contents == | == Contents == | ||
− | |||
{{Smallvspace}} | {{Smallvspace}} | ||
Line 106: | Line 85: | ||
{{Vspace}} | {{Vspace}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<div class="about"> | <div class="about"> | ||
Line 171: | Line 94: | ||
:2017-08-05 | :2017-08-05 | ||
<b>Modified:</b><br /> | <b>Modified:</b><br /> | ||
− | : | + | :2020-09-22 |
<b>Version:</b><br /> | <b>Version:</b><br /> | ||
− | :1.0 | + | :1.0.01 |
<b>Version history:</b><br /> | <b>Version history:</b><br /> | ||
+ | *1.0.1 2020 Maintenance | ||
*1.0 New material | *1.0 New material | ||
</div> | </div> | ||
− | |||
− | |||
{{CC-BY}} | {{CC-BY}} | ||
+ | [[Category:ABC-units]] | ||
+ | {{UNIT}} | ||
+ | {{LIVE}} | ||
</div> | </div> | ||
<!-- [END] --> | <!-- [END] --> |
Latest revision as of 05:20, 23 September 2020
Probability Distribution
(Nature of a probability distribution, important distributions, comparing observed and simulated probability distributions, Kullback-Leibler divergence, the Kolmogorov-Smirnov test.)
Abstract:
Probability distributions are at the core of any statistical analysis, in which modelled distributions are compared with sampled distributions to relate an observation to our theoretical understanding. This unit introduces the principles, discusses Poisson, uniform, and normal distributions, and presents methods to compare distributions with each other and quantify the difference.
Objectives:
|
Outcomes:
|
Deliverables:
Prerequisites:
You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:
- Calculus: functions and equations; polynomial functions, logarithms, trigonometric functions; integrals and derivatives; theorem and proof.
This unit builds on material covered in the following prerequisite units:
Contents
Evaluation
Evaluation: NA
Contents
Task:
- Open RStudio and load the
ABC-units
R project. If you have loaded it before, choose File → Recent projects → ABC-Units. If you have not loaded it before, follow the instructions in the RPR-Introduction unit. - Choose Tools → Version Control → Pull Branches to fetch the most recent version of the project from its GitHub repository with all changes and bug fixes included.
- Type
init()
if requested. - Open the file
FND-STA-Probability_distribution.R
and follow the instructions.
Note: take care that you understand all of the code in the script. Evaluation in this course is cumulative and you may be asked to explain any part of code.
About ...
Author:
- Boris Steipe <boris.steipe@utoronto.ca>
Created:
- 2017-08-05
Modified:
- 2020-09-22
Version:
- 1.0.01
Version history:
- 1.0.1 2020 Maintenance
- 1.0 New material
This copyrighted material is licensed under a Creative Commons Attribution 4.0 International License. Follow the link to learn more.