Difference between revisions of "RPR-Genetic code optimality"
m |
m |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <div id=" | + | <div id="ABC"> |
− | + | <div style="padding:5px; border:1px solid #000000; background-color:#b3dbce; font-size:300%; font-weight:400; color: #000000; width:100%;"> | |
Optimality of the Genetic Code: an R Exploration | Optimality of the Genetic Code: an R Exploration | ||
− | + | <div style="padding:5px; margin-top:20px; margin-bottom:10px; background-color:#b3dbce; font-size:30%; font-weight:200; color: #000000; "> | |
− | + | (Simulating genetic code optimality) | |
− | + | </div> | |
− | |||
− | |||
− | |||
− | Simulating genetic code optimality | ||
</div> | </div> | ||
− | {{ | + | {{Smallvspace}} |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <div style="padding:5px; border:1px solid #000000; background-color:#b3dbce33; font-size:85%;"> | |
− | + | <div style="font-size:118%;"> | |
− | + | <b>Abstract:</b><br /> | |
− | |||
− | |||
− | < | ||
− | <div | ||
− | |||
<section begin=abstract /> | <section begin=abstract /> | ||
− | + | This unit explores R code to test the idea that the genetic code is not random. | |
− | |||
<section end=abstract /> | <section end=abstract /> | ||
− | + | </div> | |
− | + | <!-- ============================ --> | |
− | + | <hr> | |
− | + | <table> | |
− | == | + | <tr> |
− | === | + | <td style="padding:10px;"> |
− | < | + | <b>Objectives:</b><br /> |
− | <!-- | + | This unit will ... |
− | You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources: | + | * ... introduce the concept of estimating evolutionary pressure on the genetic code by quantifying the effect of mutations; |
− | < | + | * ... demonstrate how a computational experiment is conducted; |
+ | * ... teach some programming techniques for working with sequences and sequence variations; | ||
+ | </td> | ||
+ | <td style="padding:10px;"> | ||
+ | <b>Outcomes:</b><br /> | ||
+ | After working through this unit you ... | ||
+ | * ... are familar with the concept of an optimized genetic code; | ||
+ | * ... can set up a computational experiment; | ||
+ | * ... can write code to mutate and translate sequences. | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <!-- ============================ --> | ||
+ | <hr> | ||
+ | <b>Deliverables:</b><br /> | ||
+ | <section begin=deliverables /> | ||
+ | <li><b>Time management</b>: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.</li> | ||
+ | <li><b>Journal</b>: Document your progress in your [[FND-Journal|Course Journal]]. Some tasks may ask you to include specific items in your journal. Don't overlook these.</li> | ||
+ | <li><b>Insights</b>: If you find something particularly noteworthy about this unit, make a note in your [[ABC-Insights|'''insights!''' page]].</li> | ||
+ | <section end=deliverables /> | ||
+ | <!-- ============================ --> | ||
+ | <hr> | ||
+ | <section begin=prerequisites /> | ||
+ | <b>Prerequisites:</b><br /> | ||
+ | You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:<br /> | ||
*<b>Biomolecules</b>: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function. | *<b>Biomolecules</b>: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function. | ||
− | |||
*<b>The Central Dogma</b>: Regulation of transcription and translation; protein biosynthesis and degradation; quality control. | *<b>The Central Dogma</b>: Regulation of transcription and translation; protein biosynthesis and degradation; quality control. | ||
− | |||
*<b>Evolution</b>: Theory of evolution; variation, neutral drift and selection. | *<b>Evolution</b>: Theory of evolution; variation, neutral drift and selection. | ||
− | + | This unit builds on material covered in the following prerequisite units:<br /> | |
− | + | *[[BIN-Sequence|BIN-Sequence (Sequence)]] | |
− | *[[BIN-Sequence]] | + | <section end=prerequisites /> |
+ | <!-- ============================ --> | ||
+ | </div> | ||
− | {{ | + | {{Smallvspace}} |
− | |||
− | |||
− | |||
− | {{ | + | {{Smallvspace}} |
− | + | __TOC__ | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Vspace}} | {{Vspace}} | ||
Line 80: | Line 72: | ||
=== Evaluation === | === Evaluation === | ||
− | |||
− | |||
<b>Evaluation: NA</b><br /> | <b>Evaluation: NA</b><br /> | ||
− | :This unit is not evaluated for course marks. | + | <div style="margin-left: 2rem;">This unit is not evaluated for course marks.</div> |
− | |||
− | |||
− | |||
− | |||
− | </div | ||
− | |||
== Contents == | == Contents == | ||
− | |||
− | |||
− | |||
− | |||
+ | {{ABC-unit|RPR-Genetic_code_optimality.R}} | ||
== Further reading, links and resources == | == Further reading, links and resources == | ||
− | |||
− | |||
− | |||
− | {{ | + | {{#pmid: 28918301}} |
+ | {{#pmid: 28853922}} | ||
== Notes == | == Notes == | ||
− | |||
− | |||
<references /> | <references /> | ||
{{Vspace}} | {{Vspace}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<div class="about"> | <div class="about"> | ||
Line 161: | Line 98: | ||
:2017-08-05 | :2017-08-05 | ||
<b>Modified:</b><br /> | <b>Modified:</b><br /> | ||
− | : | + | :2020-09-24 |
<b>Version:</b><br /> | <b>Version:</b><br /> | ||
− | : | + | :1.1 |
<b>Version history:</b><br /> | <b>Version history:</b><br /> | ||
+ | *1.1 2020 Maintenance | ||
+ | *1.0 New material | ||
*0.1 First stub | *0.1 First stub | ||
</div> | </div> | ||
− | |||
− | |||
{{CC-BY}} | {{CC-BY}} | ||
+ | [[Category:ABC-units]] | ||
+ | {{UNIT}} | ||
+ | {{LIVE}} | ||
</div> | </div> | ||
<!-- [END] --> | <!-- [END] --> |
Latest revision as of 12:15, 24 September 2020
Optimality of the Genetic Code: an R Exploration
(Simulating genetic code optimality)
Abstract:
This unit explores R code to test the idea that the genetic code is not random.
Objectives:
|
Outcomes:
|
Deliverables:
Prerequisites:
You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:
- Biomolecules: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function.
- The Central Dogma: Regulation of transcription and translation; protein biosynthesis and degradation; quality control.
- Evolution: Theory of evolution; variation, neutral drift and selection.
This unit builds on material covered in the following prerequisite units:
Evaluation
Evaluation: NA
Contents
Task:
- Open RStudio and load the
ABC-units
R project. If you have loaded it before, choose File → Recent projects → ABC-Units. If you have not loaded it before, follow the instructions in the RPR-Introduction unit. - Choose Tools → Version Control → Pull Branches to fetch the most recent version of the project from its GitHub repository with all changes and bug fixes included.
- Type
init()
if requested. - Open the file
RPR-Genetic_code_optimality.R
and follow the instructions.
Note: take care that you understand all of the code in the script. Evaluation in this course is cumulative and you may be asked to explain any part of code.
Further reading, links and resources
Fimmel & Strüngmann (2018) Mathematical fundamentals for the noise immunity of the genetic code. BioSystems 164:186-198. (pmid: 28918301) |
Koonin & Novozhilov (2017) Origin and Evolution of the Universal Genetic Code. Annu Rev Genet 51:45-62. (pmid: 28853922) |
Notes
About ...
Author:
- Boris Steipe <boris.steipe@utoronto.ca>
Created:
- 2017-08-05
Modified:
- 2020-09-24
Version:
- 1.1
Version history:
- 1.1 2020 Maintenance
- 1.0 New material
- 0.1 First stub
This copyrighted material is licensed under a Creative Commons Attribution 4.0 International License. Follow the link to learn more.