Difference between revisions of "RPR-Genetic code optimality"

From "A B C"
Jump to navigation Jump to search
m
m
 
Line 1: Line 1:
 
<div id="ABC">
 
<div id="ABC">
<div style="padding:5px; border:1px solid #000000; background-color:#f4d7b7; font-size:300%; font-weight:400; color: #000000; width:100%;">
+
<div style="padding:5px; border:1px solid #000000; background-color:#b3dbce; font-size:300%; font-weight:400; color: #000000; width:100%;">
 
Optimality of the Genetic Code: an R Exploration
 
Optimality of the Genetic Code: an R Exploration
<div style="padding:5px; margin-top:20px; margin-bottom:10px; background-color:#f4d7b7; font-size:30%; font-weight:200; color: #000000; ">
+
<div style="padding:5px; margin-top:20px; margin-bottom:10px; background-color:#b3dbce; font-size:30%; font-weight:200; color: #000000; ">
 
(Simulating genetic code optimality)
 
(Simulating genetic code optimality)
 
</div>
 
</div>
Line 10: Line 10:
  
  
<div style="padding:5px; border:1px solid #000000; background-color:#f4d7b733; font-size:85%;">
+
<div style="padding:5px; border:1px solid #000000; background-color:#b3dbce33; font-size:85%;">
 
<div style="font-size:118%;">
 
<div style="font-size:118%;">
 
<b>Abstract:</b><br />
 
<b>Abstract:</b><br />
Line 41: Line 41:
 
<b>Deliverables:</b><br />
 
<b>Deliverables:</b><br />
 
<section begin=deliverables />
 
<section begin=deliverables />
<!-- included from "./data/ABC-unit_components.txt", section: "deliverables-time_management" -->
 
 
<li><b>Time management</b>: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.</li>
 
<li><b>Time management</b>: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.</li>
<!-- included from "./data/ABC-unit_components.txt", section: "deliverables-journal" -->
 
 
<li><b>Journal</b>: Document your progress in your [[FND-Journal|Course Journal]]. Some tasks may ask you to include specific items in your journal. Don't overlook these.</li>
 
<li><b>Journal</b>: Document your progress in your [[FND-Journal|Course Journal]]. Some tasks may ask you to include specific items in your journal. Don't overlook these.</li>
<!-- included from "./data/ABC-unit_components.txt", section: "deliverables-insights" -->
 
 
<li><b>Insights</b>: If you find something particularly noteworthy about this unit, make a note in your [[ABC-Insights|'''insights!''' page]].</li>
 
<li><b>Insights</b>: If you find something particularly noteworthy about this unit, make a note in your [[ABC-Insights|'''insights!''' page]].</li>
 
<section end=deliverables />
 
<section end=deliverables />
Line 52: Line 49:
 
<section begin=prerequisites />
 
<section begin=prerequisites />
 
<b>Prerequisites:</b><br />
 
<b>Prerequisites:</b><br />
<!-- included from "./data/ABC-unit_components.txt", section: "notes-external_prerequisites" -->
 
 
You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:<br />
 
You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:<br />
<!-- included from "./data/ABC-unit_prerequisites.txt", section: "biomolecules" -->
 
 
*<b>Biomolecules</b>: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function.
 
*<b>Biomolecules</b>: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function.
<!-- included from "./data/ABC-unit_prerequisites.txt", section: "central_dogma" -->
 
 
*<b>The Central Dogma</b>: Regulation of transcription and translation; protein biosynthesis and degradation; quality control.
 
*<b>The Central Dogma</b>: Regulation of transcription and translation; protein biosynthesis and degradation; quality control.
<!-- included from "./data/ABC-unit_prerequisites.txt", section: "evolution" -->
 
 
*<b>Evolution</b>: Theory of evolution; variation, neutral drift and selection.
 
*<b>Evolution</b>: Theory of evolution; variation, neutral drift and selection.
<!-- included from "./data/ABC-unit_components.txt", section: "notes-prerequisites" -->
 
 
This unit builds on material covered in the following prerequisite units:<br />
 
This unit builds on material covered in the following prerequisite units:<br />
 
*[[BIN-Sequence|BIN-Sequence (Sequence)]]
 
*[[BIN-Sequence|BIN-Sequence (Sequence)]]
Line 70: Line 62:
  
  
{{REVISE}}
 
  
 
{{Smallvspace}}
 
{{Smallvspace}}
Line 80: Line 71:
  
  
 +
=== Evaluation ===
 +
<b>Evaluation: NA</b><br />
 +
<div style="margin-left: 2rem;">This unit is not evaluated for course marks.</div>
 
== Contents ==
 
== Contents ==
<!-- included from "./components/RPR-Genetic_code_optimality.components.txt", section: "contents" -->
 
  
 
{{ABC-unit|RPR-Genetic_code_optimality.R}}
 
{{ABC-unit|RPR-Genetic_code_optimality.R}}
  
== Self-evaluation ==
 
<!--
 
=== Question 1===
 
 
Question ...
 
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
Answer ...
 
<div class="mw-collapsible-content">
 
Answer ...
 
 
</div>
 
  </div>
 
 
  {{Vspace}}
 
 
-->
 
== Notes ==
 
<!-- included from "./components/RPR-Genetic_code_optimality.components.txt", section: "notes" -->
 
<!-- included from "./data/ABC-unit_components.txt", section: "notes" -->
 
<references />
 
 
== Further reading, links and resources ==
 
== Further reading, links and resources ==
  
Line 112: Line 84:
 
{{#pmid: 28853922}}
 
{{#pmid: 28853922}}
  
 +
== Notes ==
 +
<references />
  
 
{{Vspace}}
 
{{Vspace}}
  
 
<!-- included from "./data/ABC-unit_components.txt", section: "ABC-unit_ask" -->
 
 
----
 
 
{{Vspace}}
 
 
<b>If in doubt, ask!</b> If anything about this learning unit is not clear to you, do not proceed blindly but ask for clarification. Post your question on the course mailing list: others are likely to have similar problems. Or send an email to your instructor.
 
 
----
 
 
{{Vspace}}
 
  
 
<div class="about">
 
<div class="about">
Line 136: Line 98:
 
:2017-08-05
 
:2017-08-05
 
<b>Modified:</b><br />
 
<b>Modified:</b><br />
:2017-08-05
+
:2020-09-24
 
<b>Version:</b><br />
 
<b>Version:</b><br />
:1.0
+
:1.1
 
<b>Version history:</b><br />
 
<b>Version history:</b><br />
 +
*1.1 2020 Maintenance
 
*1.0 New material
 
*1.0 New material
 
*0.1 First stub
 
*0.1 First stub
 
</div>
 
</div>
[[Category:ABC-units]]
 
<!-- included from "./data/ABC-unit_components.txt", section: "ABC-unit_footer" -->
 
  
 
{{CC-BY}}
 
{{CC-BY}}
  
 +
[[Category:ABC-units]]
 +
{{UNIT}}
 +
{{LIVE}}
 
</div>
 
</div>
 
<!-- [END] -->
 
<!-- [END] -->

Latest revision as of 12:15, 24 September 2020

Optimality of the Genetic Code: an R Exploration

(Simulating genetic code optimality)


 


Abstract:

This unit explores R code to test the idea that the genetic code is not random.


Objectives:
This unit will ...

  • ... introduce the concept of estimating evolutionary pressure on the genetic code by quantifying the effect of mutations;
  • ... demonstrate how a computational experiment is conducted;
  • ... teach some programming techniques for working with sequences and sequence variations;

Outcomes:
After working through this unit you ...

  • ... are familar with the concept of an optimized genetic code;
  • ... can set up a computational experiment;
  • ... can write code to mutate and translate sequences.

Deliverables:

  • Time management: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.
  • Journal: Document your progress in your Course Journal. Some tasks may ask you to include specific items in your journal. Don't overlook these.
  • Insights: If you find something particularly noteworthy about this unit, make a note in your insights! page.

  • Prerequisites:
    You need the following preparation before beginning this unit. If you are not familiar with this material from courses you took previously, you need to prepare yourself from other information sources:

    • Biomolecules: The molecules of life; nucleic acids and amino acids; the genetic code; protein folding; post-translational modifications and protein biochemistry; membrane proteins; biological function.
    • The Central Dogma: Regulation of transcription and translation; protein biosynthesis and degradation; quality control.
    • Evolution: Theory of evolution; variation, neutral drift and selection.

    This unit builds on material covered in the following prerequisite units:


     



     



     


    Evaluation

    Evaluation: NA

    This unit is not evaluated for course marks.

    Contents

    Task:

     
    • Open RStudio and load the ABC-units R project. If you have loaded it before, choose FileRecent projectsABC-Units. If you have not loaded it before, follow the instructions in the RPR-Introduction unit.
    • Choose ToolsVersion ControlPull Branches to fetch the most recent version of the project from its GitHub repository with all changes and bug fixes included.
    • Type init() if requested.
    • Open the file RPR-Genetic_code_optimality.R and follow the instructions.


     

    Note: take care that you understand all of the code in the script. Evaluation in this course is cumulative and you may be asked to explain any part of code.


     

    Further reading, links and resources

    Fimmel & Strüngmann (2018) Mathematical fundamentals for the noise immunity of the genetic code. BioSystems 164:186-198. (pmid: 28918301)

    PubMed ] [ DOI ]

    Koonin & Novozhilov (2017) Origin and Evolution of the Universal Genetic Code. Annu Rev Genet 51:45-62. (pmid: 28853922)

    PubMed ] [ DOI ]

    Notes


     


    About ...
     
    Author:

    Boris Steipe <boris.steipe@utoronto.ca>

    Created:

    2017-08-05

    Modified:

    2020-09-24

    Version:

    1.1

    Version history:

    • 1.1 2020 Maintenance
    • 1.0 New material
    • 0.1 First stub

    CreativeCommonsBy.png This copyrighted material is licensed under a Creative Commons Attribution 4.0 International License. Follow the link to learn more.