Difference between revisions of "APB-Data-Correlation"
m |
m |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <div id=" | + | <div id="ABC"> |
− | + | <div style="padding:5px; border:1px solid #000000; background-color:#f2fafa; font-size:300%; font-weight:400; color: #000000; width:100%;"> | |
Correlation | Correlation | ||
− | + | <div style="padding:5px; margin-top:20px; margin-bottom:10px; background-color:#f2fafa; font-size:30%; font-weight:200; color: #000000; "> | |
− | + | (Correlation: measurement, significance, Pearson. MIC as alternative.) | |
− | + | </div> | |
− | |||
− | |||
− | |||
− | Correlation: measurement, significance, Pearson. MIC as alternative. | ||
</div> | </div> | ||
− | {{ | + | {{Smallvspace}} |
− | |||
− | |||
− | + | <div style="padding:5px; border:1px solid #000000; background-color:#f2fafa33; font-size:85%;"> | |
− | + | <div style="font-size:118%;"> | |
− | + | <b>Abstract:</b><br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | <div | ||
− | |||
<section begin=abstract /> | <section begin=abstract /> | ||
− | |||
This unit discusses correlation between data points in 2 and higher dimensions. Calculation, significance and interpretation of Pearson correlation coefficiants are discussed. As an alternative, the unit presents the Maximum Information Coefficient (MIC) as made available in the <code>minerva</code> package. | This unit discusses correlation between data points in 2 and higher dimensions. Calculation, significance and interpretation of Pearson correlation coefficiants are discussed. As an alternative, the unit presents the Maximum Information Coefficient (MIC) as made available in the <code>minerva</code> package. | ||
<section end=abstract /> | <section end=abstract /> | ||
− | + | </div> | |
− | + | <!-- ============================ --> | |
− | + | <hr> | |
− | + | <table> | |
− | == | + | <tr> |
− | === | + | <td style="padding:10px;"> |
− | < | + | <b>Objectives:</b><br /> |
+ | ... | ||
+ | </td> | ||
+ | <td style="padding:10px;"> | ||
+ | <b>Outcomes:</b><br /> | ||
+ | ... | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <!-- ============================ --> | ||
+ | <hr> | ||
+ | <b>Deliverables:</b><br /> | ||
+ | <section begin=deliverables /> | ||
+ | <li><b>Time management</b>: Before you begin, estimate how long it will take you to complete this unit. Then, record in your course journal: the number of hours you estimated, the number of hours you worked on the unit, and the amount of time that passed between start and completion of this unit.</li> | ||
+ | <li><b>Journal</b>: Document your progress in your [[FND-Journal|Course Journal]]. Some tasks may ask you to include specific items in your journal. Don't overlook these.</li> | ||
+ | <li><b>Insights</b>: If you find something particularly noteworthy about this unit, make a note in your [[ABC-Insights|'''insights!''' page]].</li> | ||
+ | <section end=deliverables /> | ||
+ | <!-- ============================ --> | ||
+ | <hr> | ||
+ | <section begin=prerequisites /> | ||
+ | <b>Prerequisites:</b><br /> | ||
*[[APB-Data-Exploration|APB-Data-Exploration (Milestone Unit: Exploratory Data Analysis)]] | *[[APB-Data-Exploration|APB-Data-Exploration (Milestone Unit: Exploratory Data Analysis)]] | ||
+ | <section end=prerequisites /> | ||
+ | <!-- ============================ --> | ||
+ | </div> | ||
− | {{ | + | {{Smallvspace}} |
− | + | {{SLEEP}} | |
− | |||
− | |||
− | {{ | + | {{Smallvspace}} |
− | + | __TOC__ | |
− | |||
− | |||
{{Vspace}} | {{Vspace}} | ||
− | === | + | === Evaluation === |
− | + | <b>Evaluation: NA</b><br /> | |
− | + | <div style="margin-left: 2rem;">This unit is not evaluated for course marks.</div> | |
− | |||
− | < | ||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </div | ||
− | |||
== Contents == | == Contents == | ||
− | |||
See also https://www.r-bloggers.com/maximal-information-coefficient-part-ii/ | See also https://www.r-bloggers.com/maximal-information-coefficient-part-ii/ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Self-evaluation == | == Self-evaluation == | ||
− | |||
<!-- | <!-- | ||
=== Question 1=== | === Question 1=== | ||
Line 115: | Line 83: | ||
--> | --> | ||
+ | == Further reading, links and resources == | ||
+ | <!-- Formatting exqmples: | ||
+ | {{#pmid: 19957275}} | ||
+ | <div class="reference-box">[http://www.ncbi.nlm.nih.gov]</div> | ||
+ | --> | ||
+ | == Notes == | ||
+ | <references /> | ||
{{Vspace}} | {{Vspace}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<div class="about"> | <div class="about"> | ||
Line 149: | Line 108: | ||
*0.1 First stub | *0.1 First stub | ||
</div> | </div> | ||
− | |||
<!-- included from "./data/ABC-unit_components.txt", section: "ABC-unit_footer" --> | <!-- included from "./data/ABC-unit_components.txt", section: "ABC-unit_footer" --> | ||
{{CC-BY}} | {{CC-BY}} | ||
+ | [[Category:BCB410-units]] | ||
+ | {{UNIT}} | ||
+ | {{SLEEP}} | ||
</div> | </div> | ||
<!-- [END] --> | <!-- [END] --> |
Latest revision as of 01:41, 23 September 2020
Correlation
(Correlation: measurement, significance, Pearson. MIC as alternative.)
Abstract:
This unit discusses correlation between data points in 2 and higher dimensions. Calculation, significance and interpretation of Pearson correlation coefficiants are discussed. As an alternative, the unit presents the Maximum Information Coefficient (MIC) as made available in the minerva
package.
Objectives: |
Outcomes: |
Deliverables:
Prerequisites:
Evaluation
Evaluation: NA
Contents
See also https://www.r-bloggers.com/maximal-information-coefficient-part-ii/
Self-evaluation
Further reading, links and resources
Notes
About ...
Author:
- Boris Steipe <boris.steipe@utoronto.ca>
Created:
- 2017-09-17
Modified:
- 2017-09-18
Version:
- 0.1
Version history:
- 0.1 First stub
This copyrighted material is licensed under a Creative Commons Attribution 4.0 International License. Follow the link to learn more.