

#### Brief outline

- Introduction to pattern discovery
  - Definition
  - Importance of patterns
- DNA Sequence pattern discovery
  - Alignment based methods
  - Non-alignment based methods
- Pattern discovery in High-throughput screening data
  - Hierarchical clustering

#### Definition

- "pattern matching is the act of checking some sequence of tokens for the presence of the constituents of some pattern"
- Not to be confused with pattern recognition, where the match usually has to be exact



#### Importance of patterns in biological data

- Sequences
  - Identification of functionally important repeats
    - Trinucleotide repeat diseases: fragile-X mental retardation, Huntington's disease, myotonic dystrophy etc...
    - Gene regulation via interaction with TFs & alter structure of chromatin or act as protein binding sites
- High-throughput screening data
  - Similar profiles across screens
    - E.g. in protein interaction networks, usually resembles physical or functional relations
    - Used to define functional modules or genes with unknown functions

### Many types of pattern recognition

- We will focus on two types
  - k-nucleotide repeats (Fully alignment based)
  - k-tuple matching (Non-alignment based)

## Sequence pattern discovery: Alignment based

- Benson and Waterman, 1995: A method for fast database search for all k-nucleotide repeats
- Kannan and Myers, 1996: algorithm for finding the two non-overlapping substrings of a given string of length, which have the highest-scoring alignment between them

# **1.** A method for fast database search for all k-nucleotide repeats

- 1. Scan sequence for **suspicious** patterns. For all suspicious patterns detected do the following:
  - Compute a similarity score for the pattern and the sequence where it was found
  - 2. If similarity score exceeds some threshold:
    - 1. Align pattern and sequence
    - 2. Determine a consensus pattern and re-compute alignment with consensus sequence
    - 3. Report sequence identification and alignment

#### **Process**

- Some database of sequences
- Parameters (e.g. k, score threshold, matrices for similarity scores...)

Pattern discovery algorithm

Detect tandem repeats

Two things to consider (sometimes counterpoise each other):

- 1. Efficiency
- 2. Sensitivity

### 1. Finding suspicious patterns

- E.g. for p=3, there are 43 there are 64 possible 3 letter words
- · Can reduce this number by grouping cyclic rotations



- · Reduced to 24 district classes of patterns
- Feasible to search database with just 24 district classes

### 1. Finding suspicious patterns

- Great! What about for larger ps?
  - For p = 8, the number of distinct classes = 8230
  - For p = 15, the number of distinct classes = 71,582,716!
- Impossible to search that many across database
- Not all classes represent biologically meaningful repeats
- To trim the impractical number of classes for larger ps (e.g. 8):
  - Identify patterns for smaller p (e.g. 3)



### Calculating similarity scores

 Recall: Need to determine if the pattern belongs to a tandem repeat through calculation of a similarity score of pattern and local region of the sequence

Consider two sequences of  $\,n$  bases  $A_i=a_ia_2...a_n$  and  $B_j=b_1b_2...b_m$  we can calculate a similarity score by filling out the the matrix:



Using...  $S(i, j) = \max_{\substack{(j, j) \in S(i, j-1) \neq \delta \\ S(i, j-1) + \delta \\ 0 \\ 0 \\ S(i, j-1) = 0}} \begin{cases} S(i-1, j-1) + \mu(i, j) \\ S(i, j-1) + \delta \\ 0 \\ 0 \\ S(i, j-1) = 0 \end{cases}$ 

 $\mu$  (i, j) Binary value: match or mismatch (e.g 2 & -1)  $\delta$  Value given to an indel of a base (e.g. -2)

### 2. Calculating similarity scores

- We have 2 sequences A and B where A is the database sequence and B is a sequence of a repeated pattern (p), **k times**We don't know before hand, how many repeats k we're going to find of our

- To avoid missing a long string of repeats, k should be large
  If k is large, it will be very computing similarity scores will be computationally

Wraparound technique: Using  $\underline{one}$  single instance of the pattern, the similarity score can be calculated by wrapping around at the end of each p

For each row, compute 2 passes:   
First pass: 
$$S(i, 1) = 0$$
 Second pass:  $S(i, 1) = \max \begin{cases} S(i-1, p) + \mu(i, j) \\ S(i-1, 1) + \delta \\ S(i, p) + \delta \\ 0 \end{cases}$ 

We then maximize the score matrix and compare to some threshold parameter: If similar enough, do alignment

## 3.Alignment $\hbox{``ls a representation of two sequences indicating which bases are match, substituted,}\\$ For an optimal alignment: start at the maximum value and trace back to determine where each value came from CGTG CGG CAG C-G CGG CG-G CGG CGG Indel in pattern Indel in sequence

#### 4. Consensus patterns

- Many suspicious patterns may pass the alignment score threshold. But are they the best?
- Need to find some consensus sequence which defines the alignment more uniquely

### 4. Consensus patterns

Example: given a suspicious pattern **P = ACGTT**, its alignment produces:

ACGAA ACGGTA -CGTT ACGT- AGGTA A

By selecting the majority base for each position: we get a consensus pattern:  $P_c$ =ACGTA which produces the alignment:

ACGAA ACGGTA -CGTT ACGT- AGGTA A

Which contains two more matches, one less substitution and two less indels than the previous alignment

### 2. Sequence pattern discovery: nonalignment based

- Alignment based pattern matching is computationally intensive due to full scale matrix operations
- k-tuple matching: Benson, 1999
  - No need for full scale matrix operations
  - No previous knowledge of the pattern required (pattern size/number of copies)
  - No restrictions on the size of the pattern

How does it work?

### k-tuple matching

- Search for matching nucleotides (k-tuples) separated by a common distance d
- k-tuples is a window of k consecutive characters from nucleotide sequence

Example: size of window=6



### k-tuple matching: identification of tandem repeats candidates

- Let S be some nucleotide sequence.
- Let k (window size) be some small integer (e.g. 5) Let P be the set of all possible k-mers (4<sup>k</sup>) called *probes*
- Let H<sub>D</sub> be the list of positions containing the position i where each probe occurs in the sequence
- 1. Slide the window of length k (5 in this case) across the sequence
- 2. Identify the probe and store its start position i in  $H_p$
- When each i for probe p is added to H<sub>p</sub>, check H<sub>p</sub> for <u>ALL</u> previous occurrences of the same probe
  - Let one earlier occurrence of probe p be at position i
  - Distance d = i-j becomes a possible pattern size for a tandem
- 4. The distance between i and j is stored in a list of distances D<sub>d</sub>: to keep track of k-tuple matches at the same distance



#### Selection of statistically significant predicted tandem repeats

Statistical criteria based on runs of heads in Bernoulli sequences (number of matches detected in the k-tuples within distance d)

Example (window size=5):



#### Selection criteria

- Four distributions:
  - Sum of heads distributions: indicates how many matches are required
  - 2. Random walk distribution: describes how distances between matches vary due to indels
  - Apparent size distribution: distinguish between tandem repeats and non-tandem direct repeats
  - 4. Waiting time distribution: Used to pick tuple sizes (longer tuples, less matches, less running time)

Cutoff for each distribution is calculated using a formulae or simulation

- · Explanation of each distribution is pretty dense so will not go into detail
- Algorithm will proceed with predicted tandem repeats that pass the selection criterion of all four distributions





# Pattern discovery in high-throughput screens data

- Start by assigning each item to a cluster, so that if you have N items. Let the distances (similarities) between the clusters the same as the distances (similarities) between the items they contain.
- 2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that now you have one cluster less.
- 3. Compute distances (similarities) between the new cluster and each of the old clusters.
- 4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

# <u>Distance metric:</u> Distances between two points

• Most common:

$$||a - b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

$$||a - b||_2^2 = \sum (a_i - b_i)^2$$

$$||a-b||_1 = \sum_i |a_i - b_i|$$

<u>Linkage criteria:</u> distance between clusters as a function of the pairwise distances

• Complete-linkage

 $\max \{ d(a, b) : a \in A, b \in B \}.$ 

• Single-linkage  $\min \{ d(a,b) : a \in A, b \in B \}.$ 

· Average-linkage

 $\frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} d(a, b).$ 





# Agglomerative vs divisive hierarchical clustering

- Agglomerative merges clusters, bottom up
- Divisive does the reverse by starting with all objects in one cluster and subdividing them into smaller pieces







Thank you!