
Genome Assembly
J. Christian Somody

6 December 2011

BCB410

Sanger Sequencing

Sanger Sequencing

Next, run a gel of the terminated

fragments, differently coloured

depending on the final nucleotide.

Read the sequence from the gel

from the bottom to the top.

Shotgun Sequencing

•Break DNA into bacterial artificial chromosomes (BACs).

•Map the BACs to the genome and obtain a tiling path.

•Apply the shotgun method to each BAC.

Shotgun Sequencing

Sequencing

 Since genomes cannot currently be

sequenced in one run, they must be

sequenced as fragments and reassembled.

 Now that sequencing is becoming fast and

accurate, how do we assemble the reads

as quickly?

 Algorithms needed to do this.

Mapping-Based Assembly

 One of the prereadings gave an overview

of mapping (“comparative”) genome

assembly.

 We will focus on de novo assembly in this

lecture.

Algorithms

 Shotgun sequencing assembly problem

 Find the shortest common superstring of a set of

sequences.

 Given n strings {s1, s2, …, sn} find the shortest string T such

that every si is a substring of T.

 This is NP-hard, problem becomes unsolvable when

implemented with many reads.

 Approximation algorithm for this: the greedy algorithm.

 Perform pairwise comparisons on the reads.

 Pick the highest scoring pair and merge.

 Repeat until no more merges can be done

Algorithms

 Shotgun sequencing assembly problem

 Greedy algorithms were the first successful assembly

algorithm implemented.

 Because of the greedy algorithm’s limitations, two other

algorithms were derived.

Algorithms

 Overlap-layout-consensus

 Algorithm based on graph theory

 A graph is constructed:

 nodes are reads, edges represent overlapping reads

 A contig (contiguous sequence) is a simple path (node

visited at most once) in the graph

Algorithms

 Overlap-layout-consensus

 An assembler builds the graph

 Output is a set of nonintersecting simple paths, each path

being a contig.

 Ideally looking for a traversal of the graph (visits all nodes

exactly once), a Hamiltonian path (also NP-hard).

 We’ll come back to a simplification of this.

Repeats

 There are often repeats in the sequence. Assembly

algorithms should detect these during assembly, not

after, to reduce incorrect reconstruction.

◦ avoid “over-collapsing” repeats

 Repeats can be detected statistically or using algorithms.

Repeats

 Statistical detection

 Under the assumption that the genome is sampled equally at

random, we see that if a certain sequence comes up more

than others, it is likely part of repeat sequence.

 Not a very good method, samples are not uniformly

distributed.

 Graph-based detection

 Finds repeats in complex parts of the graph constructed

during the assembly process.

 Complex areas investigated and attempted to be resolved.

Scaffolding

 Scaffolding groups contigs into subsets with known order and
orientation.

 Nodes are contigs.

 Directed edge is between two nodes when paired-end tags bridge
the gap between them.

Scaffolding

 Three basic problems
 Find all connected components

 Find a consistent orientation for all nodes in the graph. Nodes have
two types of edges

 Same orientation

 Different orientation

 Consistent orientation possible only if all undirected cycles have an even
number of reversal edges.

 Optimization problem: find the smallest number of edges to be removed so
that no cycle has an odd number of reversal edges

 Fit the edges on a line so the least number of constraints is
invalidated. (NP-complete)

 Analogy

◦ Like taking a map, broken into pieces, and reassembling it
using the cities spanning more than one piece to help
determine boundaries.

More Assembly Methods

 many graph-based methods exist:

◦ EULER assembler: previously discussed

◦ string graph: same graph, remove redundant

edges, establish edge constraints (must

balance flux at each node), find shortest

walk… a very complicated algorithm, fails

when a repeat is longer than a read

◦ all methods minimise size of genome, result in

repeat “over-collapsing”, assemblies can be

improved

Maximum Likelihood Assembly

 Medvedev & Brudno changed the goal of

assembly: don’t want to minimize size of

genome, but maximize its likelihood!

 Take advantage of the high coverage to
estimate the copy number of each read

 Maximizing the likelihood can be
considered a “mininum-cost bidirected
flow” problem

Bidirected Overlap Graph

 Edges in bidirected graphs have two orientations: one at
each end

 Therefore, three types of edges:

 ***For a walk in a bidirected

graph, for each vertex on that

walk, the orientation of the edge

entering the vertex must be

opposite that of the edge

leaving the vertex.

Bidirected Overlap Graph

 Each vertex is a double-stranded read, edges represent
read overlaps

 Three possible ways that two double-stranded reads
can overlap (corresponds to the three types of edges)

◦ Given two reads, each read can be oriented to the left or to the
right , giving three possible overlaps:

Bidirected Overlap Graph

 A walk along this graph that visits every vertex
at least once produces the original double-
stranded genome (under the assumptions that
the whole genome was covered by the reads,
and that the reads are error-free)

 Overlap graph is constructed by placing an edge
between two reads if they overlap by a
minimum number of characters

 Then perform transitive edge reduction: remove
overlaps covered by two shorter overlaps

Chinese Postman Problem

 In a weighted graph, a “tour” is a walk that

traverses every edge at least once. A

“circuit” is a cyclical tour.

 Chinese postman problem is to find a

minimum weight circuit.

 Eulerian circuit is a circuit traversing each

edge exactly once (not always possible).

Minimum-Cost Biflow Problem

 Set upper (u) and lower (l) flow bounds

on each edge, cost (c) for each edge

 Flow function f must obey the constraint

for each edge e

 For each vertex, the incoming flow is

balanced with the outgoing flow

 Objective: Find the flow that minimizes

 euefel

ce f e

Adjusted Minimum-Cost Biflow Problem

 Upper and lower flow bounds on vertices as well

 Accomplished by splitting every vertex v into two: v+
and v-

 v- serves as the “incoming” vertex, and inherits v’s
incoming edges

 v+ serves as the “outgoing” vertex, and inherits v’s
outgoing edges

 Finally add one edge between v-

 and v+ and assign it the upper

 and lower flow bounds for v

Build Graph Given Spectrum

 Nodes are all (k-1)-molecule sequences

present in k-molecule-spectrum (two per

k-molecule).

 Directed edges connect 5’-heavy (k-1)-

mer to 3’-heavy one in positive strands,

opposite in negative strands.

 Edges unweighted (all have weight of 1).

Demonstration

 How to build graph given k-molecule-

spectrum.

Demonstration

 Convert to bidirected de Bruijn graph:

Demonstration

 Now find circular walk in this graph

(includes all edges)

 While walking, append each node minus

the overlap to some string.

Direction of entry =

which strand to read

ATTGCCAAC

Reverse walk gives

reverse complement!

Conversion to Algorithm

 This procedure is trivial to do manually

for small graphs, but imagine a graph of

tens of thousands of 50-mers, for

example. An efficient algorithm is needed.

 We already have algorithms for shortest

path, but it needs to be modified for this

special case.

Adjustments

 Supersource and supersink added to convert flow
problem into circulation problem

 Each vertex has a lower bound of 1, since each
read must appear in the finished genome at least
once

 Edge bounds are set to 0 (lower bound) and
infinity (upper bound)

 Put prohibitively large cost on the edge leading
from the supersource and the edge leading to the
supersink to ensure that the assembly uses the
smallest number of contigs possible

 Flow through each vertex represents number of
times it appears in the assembled genome

Methods: Maximizing the Global Read-

Count Likelihood
 Start with the probability of a k-mer i being sampled a

certain number of times from a genome G

 Let N(G) be the length of the genome assembly of G,

and let gi be the frequency of i in G

 Under the assumption of uniform sampling, the

probability of sampling i is gi/N(G)

 Let Xi be the random variable that represents the

number of trials whose outcome is i

 Each random variable for every possible k-mer has a

binomial distribution. Their joint distribution is the

following multinomial distribution:

P X1 x1,X2 x2, ,X
4 k
 x

4 k
n!

xi
gi

N G

xi

i

Putting It Together

 Build the bidirected overlap graph.

 Perform transitive edge reduction (remove
redundant overlaps).

 Add supersource and supersink and
appropriate weightings to the graph.

 Solve biflow problem (using likelihoods).

◦ very confusing portion of algorithm

 Solution gives collection of walks,
representing contigs.

 Assemble contigs using paired-end read data.

Likelihood Algorithm

 From this, derive the global read-count
likelihood, the likelihood of k-mer distributions
(gi) given the sampling outcomes (xi):

 Goal is to maximize L, or, equivalently, minimize
the negative log of L

 To translate this problem into a convex min-
cost biflow problem, we need convex functions
for each k-mer ci s.t.

 Problem: the Xi random variables are not
independent…

L g1, ,g
4 k
| x1, ,x

4 k
n!

xi
gi

N G

xi

logL ci gi

Likelihood Algorithm

 … unless the number of trials approaches
infinity

 The number of trials is usually large enough to
warrant the approximation of the multinomial
distribution as the product of the binomial
distributions for each Xi

 In this binomial approximation, genome length
N(G) is constant, and independent of the
sampling frequencies

 Therefore, use N instead, which is the actual
length of the genome G

Likelihood Algorithm

 New approximation of L:

 Now

 And

 ci is used as the convex functions for the

vertices of the min-cost biflow graph

described earlier

L g1, ,g
4 k
| x1, ,x

4 k P X i xi
n

xi

gi

N

xi

1
gi

N

nxi

logL K ci gi

ci gi xi loggi n xi log N gi

Convert Flow to Contigs

 Decompose flow into a collection of walks, which
translates into assembled contigs

 Graph is first simplified by removing all edges with a
flow of zero

 Additional simplifications possible by removing vertices
v where:
◦ There is exactly one edge going into v and one edge leading out

of v, and the flow on both edges is the same

◦ Vertices where there is also a loop with the same flow as the
other two edges, and

◦ Split and join vertices, where the flow on the in-

 edges is the same as those of the out-edges

(Potentially Problematic) Assumptions

 First major assumption: Reads are error-

free

◦ can be overcome with higher coverage

 Second major assumption: Uniform

sampling of all genomic regions

◦ certain portions of the genome are actually easier to

sample than others

Assembly Quality

 Assessing Assembly Quality

 misassembly correction is expensive

 some assemblers have a simple quality-control method that

does not capture larger errors

 test assembly software if we know a complete sequence

(artificial or real)

 measures of quality: number and sizes of contigs

 under assumption that having few large contigs is better than many small

ones.

 only partially true, because there are less gaps in the former, but, does not

account for the possibility of misassemblies

Questions?

