
R Programming
-defining functions and programs in R

Martin He
martin.he@utoronto.ca

2

Outline

• Preliminaries
• Basics of R
• Defining functions and programs
• R and bioinformatics

3

What is R?
• R is a programming enviorment for statistics

and graphics
– Data handling(input,output)
– Matrix operation
– Statistical tests
– Graphics
– Highly specialized data analysis

•Originally developed by Robert Gentleman and Ross
Ihaka as the open-source version of the S programming
language by John Chambers

4

R:core and packages
• R core

– language interpreter
– User interface (GUI)
– Graphics terminal
– Suite of essential tools for statistics and graphics

• Contributed packages
-Specialized data analysis(e.g. microarrays) or
graphics
-Any researcher can develop and submit packages
-Bioconductor is a project for the development of
genomic data analysis packages

5

Preliminaries
• Installing R

– Go to
– http://cran.r-project.org/

– select the latest and
appropriate version to
install on your
machine

– Install and open,it
should look like this

6

Preliminaries

• To use R as an calculator, type 2+5 and
hit ENTER(But note how R prints the
result)

• To create variables in R,use either -> or =
to assign values to variables
approach 1
>a = 5
>a
[1] 5
approach 2
>a = 5 ; a
approach 3
> b <- 5 ; b

7

Vectors
• A vector is an object composed of an ordered

collection of elements of the same type
• Vectors have a mode(or type) and a length

– the basic modes are : logical , numeric ,
complex and character

#creating a vector
> x = c(1,2,3,4);

#length
>length (x)
[1] 4

#mode
>mode(x)
[1] "numeric"$

8

Vector indexes
• To access a subset of the vector, use indixes:the

first element is associated to index1,etc
• The attemp to extract an element that does not

exist will produce an error
• However,you will be able to assign a value to a

position that does not exist yet
• Vector element can also be accessed

– Using textual label associated to elements
– Using vectors of logical values (only elements with a

corresponding true value will be extracted)

9

Vectors

• For vectors with equal spacing , using
seq():

• For Vectors of a given length, use rep():

#create a vector from 1 to 3 with 0.5 increments
> e = seq(from = 1 , to = 3 , by = 0.5) ; e
[1] 1.0 1.5 2.0 2.5 3.0

> f = rep (na , 6) ; f
[1] NA NA NA NA NA NA

10

Lists

• Lists provide a way of storing objects of
different types in a single container
– it has a length and has mode "list"
– the length of a list is the number of objects it

was created from, not the total num of elems
>x = list (17 , "A" , TRUE);
>length(x)
[1] 3
>mode(x)
[1] "list"

>y = list (c(1,2,3) , c(4,5))
>length(x) #What's the length of list y
[1] 2

11

Matrices
• Matrices and arrays can be regarded as the

2-dimensional extensions of vectors
• To create a matrix, use the matrix() function:

>mat <- matrix (1:6 ,nrow =3, ncol = 2) ; mat
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

#What if we want a 3x2 matrix that take 1->6 row-wise
>mat <- matrix (1:6 ,nrow =3, ncol = 2,byrow = T) ; mat
 [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

12

Matrices

• In analogy to vectors, there are different
ways to access the matrix elements
– Numerical indexes
– Logical vaues
– Text labels(rownames, colnames)

13

Matrices

• To find a tranpose of a matrix, use t():

• Similarily,usefunction dim() to find the
dimension of a matrix, use nrow() and
ncol() to find the number of rows and
columns

>t (mat)
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

14

Arithmatic operations of matrices

• Matrix and scalar:
– every element of the matrix is oprated, using the

scalar
– Addition,substraction,multiplication,division....

• Matrix and vector:
– The vector is treated as a matrix with only one row or

one column
– with recycling if required

• Matrix and matrix:
– Element by element (compatible dimensions required)
– Matrix product(similar to dot product)

15

Data types

• Beside numbers and strings, there are
some other data types in R which are very
useful in statistical data analysis

• Factors
• Data frames

16

Factors

• A good deal of statistical data is of a form
which indicates which one of several
possible categories that an obsevation
falls into,like gender: female, male

• We can use factor() and ordered()
• The function factor() creates data objects

wihch represent variables containing
unordered categorial data.

17

Factors

• Elements of the set of possible categories that a
categorial variable can take on are known as levels of
that factor , it is printed when a factor is printed, but can
also be retrived with the level() function

> eyes = c("blue","hazel","brown","green","brown","blue","blue","brown")
>eyecol = factor(eyes)
>eyes
[1] "blue" "hazel" "brown" "green" "brown" "blue" "blue" "brown"

>eyecol
[1] blue hazel brown green brown blue blue brown
Levels: blue brown green hazel
#What's the difference here

18

Data frames
• A data frame is similar to a matrix but every

column can have different type
(numeric, character, logical, factor)

• It provide a way of grouoing a number of vectors
and/or factors and return a single object
containing the variables.

• Because data frames have a simple retangular
row/colunmn layout, it is tempting to treat them
as matrices, but this is conceptually wrong and
can lead to very inefficient computations.

19

Data frames

• An example
#create a simple dataframe of gender&hight data set
#use data.frame() to create data frames
> gender = factor(rep(c("female","male") , c(4,4)))
>height = c(165,176,171,177,176,193,180,193)
>classinfo = data.frame(data.frame(gender,height))
>classinfo
 gender height
1 female 165
2 female 176
3 female 171
4 female 177
5 male 176
6 male 193
7 male 180
8 male 193

20

Data frames

• The underlying representation of data
frames is as a named list of vectors and
factors,so we can extract elements by
name

>classinfo$height
[1] 165 176 171 177 176 193 180 193

#To get the average height for male and female
>tapply(classinfo$height , classinfo$gender , mean)
female male
172.25 185.50

21

Workspace

• the workspace is the collection of all the
objects you have created in a specific R
session
– To list all objects in your workspace
 ls ()
– To remove object(s) from the workspace
 rm (objects)
– to remove all objects in the workspace
 rm (list = ls ())

22

Workspace

• You can save all objects in your
workspace, for use in another session,
wither using the GUI or use commands

• use save (objects , file = filename) or
save.image (file = filename) if you want to
save all objects

23

Working directory
• Mind that the workspace will be saved to a file

located in the current working directory
• To change the working directory use the GUI or

the following command

• To check what's in the current working directory

use setwd(path)
setwd ("C:\Users\Yourname\Documents\Data")

getwd()

24

Importing datasets to R

• To import data sets that are not an R data set
object(i.e. do not have a .RData extension):
– check what folder R is working with right now:
– tell R what folder the dataset is stored(if different from

the current directory)
– use the read.table() command to read in the data

• For data sets that are an R data set object(i.e.
have .RData extension)
– load the data into R from the console

load("dataSetName.RData")
– or simply double click on the file

25

R graphics
• R has a number of functions that produce

graphics on screen.
• When these functions are called, a graphics

window is opened on screen (if one is not
already open) and the graphs are drawn or
rendered there.

• Some function draw an entire graph with a
single function call,they are called high-level
graphics functions.

• Other graphics functions are used to build up
graphs incrementally, they are called low-level
graphics function

26

The plot functions
• The most basic plot function in R is called plot.
• It takes a set of x and y coordinates and

produces a plot based on these coordinates
• The simplest plot is scatterplot, but optional

arguments made it possible to produce a variety
of different plot styles

• Other optional arguments control features such
as axis labelling and annotation

27

An example
> xval = 1:100
> yval = rnorm(100)
>plot (xvals , yvals)

28

Customising labelling
• The default annotation and labelling can be

overriden with optimal main,xlab,ylab and sub
arguments

>plot(xvals , yvals , main = "An overall title" , xlab = "A label for x-axis" ,
ylab = "A label for y-axis" , sub = "a plot subtitle"

29

Defining functions and programs in R

• Built-in functions in R
• Define simple functions
• Flow of control
• Evaluation
• More complicated functions

30

Functions

• All computation in R are carried out by
calling functions

• a call to an R function takes zero or more
arguments and return a single variable

• Defining function provides user a way of
adding new functionality to R

• function define by users have the same
status as the function built into R

31

Built-in function
• Here is a collection of some of the most basic and

useful built-in function in R
1.Numeric function
FunctionFunctionFunctionFunction DescriptionDescriptionDescriptionDescription

abs (x) absolute value

sqrt (x) square root

ceiling (x) ceiling of (3.45) is 4

floor (x) floor of (3.45) is 3

trunc (x) trunc (5.999) is 5

round (x , digits = n) round a number to desired digits

signif (x , digits = n) round number to specific number of significant digits

log (x) natural logarithm

exp (x) e^x

32

2.statistical function
Built-in function
FunctionFunctionFunctionFunction DescriptionDescriptionDescriptionDescription

mean (x) mean of object x

sd (x) standard deviation of object x

median (x) median

quantile (x , probs) quantiles where x is the numeric vector whose
quantile are desired

range (x) range

sum (x) sum

diff (x, lag = 1) lagged difference

min (x) , max (x) maximum ; minimum

scale (x , center = TRUE,
scale = TRUE)

column center or standardize a matrix.

33

 First step:define a simple function

• We define a function which returns the square of its
argument
– we can use this function in exactly the same way as any

other R function
– Because the * operator act elements-wise on vectors,

the square function we created will act the same way

> square = function (x) x * x
>square (10)
[1] 100

>square (1:5)
[1] 1 4 9 16 25

34

Functions defined in terms of other functions

• The square function is no different from any
other R function and we can use it in other
function definitions
– e.g. we can define a function that returns the sum of

the squares based on the square function we just
defined

> sumsq = function (x) sum (square (x))

>sumsq (1:10)
[1] 385

35

Example:the which function

• This is a very useful R function, called which that
takes a logical vector and returns the indexes of
the values in the vector that are true,here is an
example:

#runif() function can generate a set of random uniform values
> u = runif (5)
> u
[1] 0.1408437 0.3629749 0.2368168 0.5566332 0.2924938

>which (u > 0.5)
[1] 4
which (0.25 < u & u < 0.75)
[1] 2 4 5

36

Exercise:define which function
• Some Tips

#We can get a set of logical values stored in a vector x
> x = u > 0.5
>x
[1] FALSE FALSE FALSE TRUE FALSE

#We can obtain the indexes of elements of the vector using this expression
> 1:length(x)
[1] 1 2 3 4 5

#We can retrieve the indexes corresponding to the TRUE elements of x by
using logical subsetting
> a = c(1, 2, 3, 4, 5) ; a
[1] 1 2 3 4 5
> b= c(TRUE,FALSE,FALSE,FALSE,TRUE); b
[1] TRUE FALSE FALSE FALSE TRUE
> a [b]
[1] 1 5

37

Exercise:define which function

• We can now create a simple version of the
which function by defining a suitable
function

• The function work as expected:

#define our own which function
>myWhich = function (x) (1:length (x)) [x]

>myWhich (u > 0.5)
[1] 4
>myWhich(0.25 < u & u < 0.75)
[1] 2 4 5

38

Some issues
• The expression 1:length(x) works fine if x

has non-zero length
• It does not do what is required when x has

length 0
>x = logical (0) ; x
logical(0)
>length(x)
[1] 0
>1:length (x)
[1] 1 0

39

Some issues
• To avoid this problem it is best to use the

alternative expression seq(along =x) to generate
the indexes of the values in x.

#How seq(along = x) behaves
> x = (u > 0.5) ; x
[1] FALSE FALSE FALSE TRUE FALSE
> seq(along = x)
[1] 1 2 3 4 5
#The same as before

#Here is the difference
> 1:length(x)
[1] 1 0
> seq(along = x)
integer(0)

40

Some Issues
• The myWhich function we have defined assumed that its argument

are logical and it can produce strange answers if it is not.
• It also doesn't act like the system function when there are NA values

present

> x = c(0,1,0,1)
#The predefined which function can recognize this issue
> which(x)
Error in which(x) : argument to 'which' is not logical
#But the function we defined can not recognize this and produce results
#that doesn't make much sense
> myWhich(x)
[1] 1 1

>x = c(TRUE , NA , FALSE)> which(x)
[1] 1
> myWhich(x)
[1] 1 NA

41

Some issues
• We can improve our which function as follows.
> myWhich = function (x) +
+ seq(along = x) [!is.na(as.logical(x)) & as.logical(x)]
#Here is what as.logical do
>as.logical (c(TRUE , FALSE , TRUE))
[1] TRUE FALSE TRUE
> as.logical(c(TRUE,FALSE,NA))
[1] TRUE FALSE NA
> as.logical(c(TRUE,FALSE,0,1))
[1] TRUE FALSE FALSE TRUE

#Here is what !is.na(as.logical(x)) do
> !is.na(as.logical(c(TRUE,FALSE,FALSE)))
[1] TRUE TRUE TRUE
> !is.na(as.logical(c(TRUE,FALSE,FALSE,NA)))
[1] TRUE TRUE TRUE FALSE
> !is.na(as.logical(c(TRUE,FALSE,FALSE,0,1)))
[1] TRUE TRUE TRUE TRUE TRUE

42

Now we are good

• Repeating tests shows all the issues are
fixed

#Recognizes 0 and 1
> myWhich (c (0 , 1 , 0 , 1))
[1] 2 4

#Recognizes NA
> myWhich (c (TRUE , NA ,FALSE))
[1] 1

#Works with 0 length vector
> myWhich (c (logical(0)))
integer(0)

43

More complicated functions

• Functions can be required to carry out
some very complex calculation

• Such calculations can require more than a
simple expression used in the which
function

• In order to create complicated functions
we need to know more about R languages
and about how to direct flow of control

44

Expression and compound expressions

• R programs are made up of expressions.These can
either be simple expressions or compound expression
consisting of simple expressions separated by
semicolons or newlines and grouped within braces.

 { expr1 ; expr2 ; ; exprn}
• Every expression in R has a value the the value of the

compound expression above is the value of exprn,e.g.
>x = { 10 , 20 }
>x
[1] 20

45

Assignments within compound expressions
• It is possible to have assignments within compound

expression and the values of the variables and the
values of variables which this procedure can be used in
later expressions
>z = { x = 10 , y = x^2 , x+y}

>x
[1] 10

>y
[1] 100

>z
[1] 100

46

If-then-else statements
• If-then-else statements make it possible to choose

between two(possibly compound) expressions
depending on the value of the condition

if (condition) expr1 else expr2

• If condition is true then expr1is evaluated otherwise
expr2 is executed

Note
- only the first element in condition is checked.
- The value of the whole expression is the value of
whichever expression was executed

47

If-then-else examples
• The expression

if (x > 0) y = sqrt (x) else y = -sqrt(-x)
 provides an example of an if-then-else statement

which will look familiar to Java,C,or Python
programs we have seen

• This statement can , however , be written more
succinctly in R as

 y = if (x > 0) sqrt (x) else -sqrt (-x)
 which will look similar to functional languages like

Lisp or Haskell

48

If-then-else statements

• There is a simplified form of if-then-else
statement which is available when there is
no expression2 to evaluate
if (condition) expression
and this is completely equivalent to the
statement
if (condition) expression else NULL

49

Combining Logical Conditions
• The & and | operators works element-wise on vector
• When programming, it is only the first element of the

logical vector which is important
• There are special logical operators && and || which work

on just the first elements of their argument
> c(TRUE , FALSE) & TRUE
[1] TRUE FALSE
> c(TRUE ,FALSE) && TRUE
[1] TRUE

50

Combining Logical conditions
• The && and || operator also evaluate just

enough of thir argument as is necessary to
determine their result

• In the first case both argument are evaluated and in the
second case only the first argument is evaluated
because the entire statement is know to be true when
the first argument is seen to be TRUE

> TRUE && print (TRUE)
[1] TRUE
[1] TRUE
> TRUE || print (TRUE)
[1] TRUE

51

For loops
• As part of a computing task we often want to

repeatedly carry out some computation for each
element of a vector or list. In R this is done with
a for loop.

• A for loop has the form:
for(variable in vector) expression

• The effect of such a loop is to set the value of
variable equal to each element of the vector in
turn, each time evaluating the given expression.

52

For loop example
• Suppose we have a vector x which contains a set of

numerical values, and we want to compute the sum of
those values. One way to carry out the calculation is to
initialize a variable to zero and to add each element in
turn to that variable.

• The effect of this calculation is to successively set the
variable i equal to each of the values
1,2, . . . ,length(x),and for each of the successive values
to evaluate the expression s = s + x[i].

> s = 0
> for (i in 1 : length (x)

s = s + x [i]

53

For loop Example 2
• The previous example is typical of loop in many

computer programming languages , but R does not need
to use an integer loop variable

• the loop could instead be written

• This is both simpler and more efficient

>s = 0
>for(elt in x)

s = s + elt

54

The "next" statement
• Sometimes, when given conditions are met, it is useful to

skip to the end of the loop, without carrying out the
intervening statements. This can be done by executing a
next statement when the conditions are met.

• When condition is true ,expression3 and expresison4 are
skipped

for(variable in vector) {
expression1
expression2
if (condition)
 next
expression3
expression4

}

55

A small exercise

• Use the for loop and "next" statement to
sums just the positive elements of a vector
x

• use the style that are more favorable in R

56

A possible solution
s = 0
for (elem in x) {

if (elem <= 0)
next

s = s + elem
}
#It does this by skipping to the end of the loop

when it encounters non-positive values

57

The "break" statement
• The break statement is similar to the next statement

but,rather than jumping to the end of the loop, it stops
the execution of the loop and jumps to the following
statement

for(variable in vector) {
 expression1
 expression2
 if (condition)
 break
 expression3
 expression4
}

58

While loops

• For loops evaluate an expression a fixed
number of time, while loops repeat until a
particular condition is false

• A while-loop looks like:
while (condition) expression

• Again, condition is an expression which
must evaluate to a simple logical value,
and expression is a simple or compound
expression

59

A simple exercise

• Suppose we have dividend = 22 and
divisor = 5, show how to carry out a long
division using while loops

• The result of 22 divided by 5 is 4 with a
remainder of 2

60

A possible solution
> dividend = 22
> divisor = 5
> wholes =0
> remainder = dividend
>while (remainder > divisor) {

remainder = remainder - divisor
wholes = wholes + 1

>c (wholes , remainder)
[1] 4 2

61

A square root algorithm
• There is a very famous method for computing square

roots devised by Isaac Newton.
• The method works by taking advantage of the fact that if

g is a guess at the square root of x then an improved
guess can be obtained by taking the average of g and
x/g.

• If g is bigger than the square root of x then x=g will be
smaller and conversely.

• By averaging the bigger and smaller values we get a
value which is closer to the square root of x than either
of them.

• Starting with a guess of 1, we keep improving the guess
until it it provides a good enough approximation.

62

Computing square roots
• This small piece of code shows how the computation

proceeds, roughly speaking, the number of correct digits
doubles every iteration

> guess = numeric (5)
> x = 2
> g = 1
> for (i in 1:5) {

g = 0.5 * (g + x/g)
guesses [i] = g

 }
>guesses
[1] 1.500000 1.416667 1.414216 1.414214
[5] 1.414214

63

A square root function

• We can put the previous algorithm/code
into a function that computes square root

>root =
function (x) {

g=1
for (i in 1:5)
 g = 0.5 * (g + x / g)
g

}

>root (2)
[1] 1.414214

64

Returning values
• So far, our function have used the structure of the code

to decide which values will be returned ((the value is that
of the last expression in the function body)

• It possible to return a value from anywhere inside a
function using a call to the return function.

• This looks like return (value)
• Calls to return function should be used sparingly (if at all)

because they make it harder to understand the structure
of code.

• In essence, a call to return amounts to doing a
goto,which is generally frowned upon in programming.

65

Functions in general
• In general, an R function definition has the form:

function (arglist) body
• where:

arglist is a (comma separated) list of variable
names known as the formal arguments of the
function,body is a simple or compound
expression known as the body of the function.

• Functions are usually, but not always, assigned
a name so that they can be used in later
expressions.

66

Evaluation of Functions
•Function evaluation takes place as follows:

 (i) Temporarily create a set of variables by
associating the arguments passed to the
function
with the variable names in arglist.
 (ii) Use these variable definitions to evaluate
the
function body.
 (iii) Remove the temporary variable
definitions.
 (iv) Return the computed values.

67

Evaluation example
• Evaluating the function call

hypot (3, 4)
takes places as follows:
(i)Temporarily create variables a and b,

which have the values 3 and 4.
(ii)Use these values to compute the value (5)

of sqrt(a^2 + b^2).
(iii)Remove the temporarily variable

definitions
(iv)Return the value 5

68

Optional Arguments
• It is possible to declare default values for

arguments so that specifying values for those
arguments is optional.

• The default values are specified by following the
argument by an = sign followed by an
expression which defines the value.

• The expression defining default values can
include variables which are arguments to the
function or which are defined in the body of the
function.

69

An example
• The following function computes the sum of squares(a

staple quantity in statistical analysis).

• By default the function computes the sum of squared
deviations around the sample mean, but the optional
second argument makes other possibilities available.

> sumsq =
function (x, about = mean (x))
sum ((x - about) ^2)

>sumsq (1:10)
[1] 82.5

>sumsq(1:10 , 0)
[1] 385

70

Lazy evaluation
• The expression given as default values of arguments are

not evaluated until they are required.
• This is referred to as lazy evaluation.
• In the example:

• The default value for about is not computed until it is
needed to evaluate the expression sum((x - about) ^ 2)

> sumsq =
function(x , about = mean(x))
{

x = x [!is.na (x)]
sum((x - about) ^ 2)

}

71

Vectorization
• In general, R functions defined on scalar values

are expected to operate element-wise on
vectors.

• The standard mathematical and string handling
functions all obey this general rule.

• Often this kind of vectorization happens naturally
as a side effect of the way R operates.

72

Invisible return values

• All R functions return a value. It is possible to
make the value returned by a function be non-
printing by returning it as the value of the
invisible function

>no.print =
 function(x)
invisible (x^2)

>no.print (1:3)
#nothing printed on screen

>x = no.print(1:3)
>x
[1] 1 4 9

73

Variable Numbers of Arguments
• R functions can be defined to take a variable number of

arguments. The special argument name ... will match
any number of arguments in the call(which are not
matched by any other arguments)

• The mean function computes the mean of values in a
single vector.We can easily create an equivalent function
which will compute the mean of all the values in all its
arguments
>myMean =

function(...)
mean(c(...))

>myMean (1:3 , 1:5)
[1] 2.625

74

Some restrictions on ...

• only one ... can be used in the formal argument
list for a function

• the only thing which can be done with ... inside a
function is to pass it as an argument to a
function call

• Argument which follow ... in a formal argument
list must be specified by name, and the name
cannot be abbreviated

75

Using ...
• The following function assembles its arguments

(twice) into a vector.

• Notice that argument name are passed along
with ...

> c2 = function (...)
c(... , ...)

> c2 (1, 2 , 3)
[1] 1 2 3 1 2 3

> c2 (a = 1 , b = 2)
a b a b
1 2 1 2

76

An example
• Sometimes a situation arises during a computation where

it is necessary to simply give up and abandon the
computation.

• There is a R function called stop which makes this easy
• The argument to stop is a character string which explains

why the computation is being stopped
> fake.fun = function (x) if (x>10) stop ("bad x value") else x

> y = fake.fun(5) ; y
[1] 5

> y = fake.fun(15)
Error in fake.fun(15) : bad x value

77

Warnings
• Occasionally, situation arise where it could be

that something has gone wrong, but it isn't
completely clear that it has.

• In such a situation it can be useful to continue
the computation, but to also alert the user that
there is a potential problem.

• The warning function can be used to issue
warnings in these cases, e.g.
> if (any (wrts < 0))

warning ("negative weights encountered")

78

General advice
• Write your own functions and (re)use them

everywhere.
• Writing functions will make you a better

programmer.
• If you find your self copy and pasting blocks of

code, write a function instead.
• Read other people's function/code (R makes this

tremendously easy).
• Do not reinvent the wheel, particularly if that the

wheel is in base.

79

Need more help?

• The above discussion of programming in
R is not conclusive there you are sure to
encounter situations that you need some
further knowledge of programming in R

80

R help
• For help with any functions

in R,put a question mark
before the function name to
determine what arguments
to use, examples and
background information.

• For example:
?plot

81

Some online resources for R
• R project home: http://www.r-project.org
• Search Engine for R: http://rseek.org
• R Reference Card:http://cran.r-

project.org/doc/contrib/Short-refcard.pdf
• R Graph Gallery: http://addictedtor.free.fr/graphiques/
• Statistics with R: http://zoonek2.free.fr/UNIX/48R/all.html
• Springer (useR!

series):http://www.springerlink.com/home/main.mpx
• A introdection to R: http://cran.r-

project.org/doc/manuals/R-intro.pdf

82

R and bioinformatics

• Bioconductor
– Introduction
– use of Bioconductor
– Installation
– Resources

83

Bioconductor

84

Bioconductor
• Bioconductor provides tools for the analysis and

comprehension of high-throughput genomic data.
– Microarrays
– High throughput assays
– Sequence data
– Annotation

• Bioconductors uses the R statistical
programming language.
– A collection of R packages

• It is open source and open development
– It has two releases each year,more than 516

packages,and an active user community.

85

Bioconductor
• Begun in 2001,

based at Havard
and now
FHCRC(Seattle,WA)

• A large collection of
R packages(they
also convert to
good software to R)

Gentleman et al (above) is a very helpful reference text

86

Bioconductor software packages
• Official website:www.bioconductor.org
• http://www.bioconductor.org/packages/release

/bioc/

87

Use of Bioconductor
• Microarray

– Import Affymetrix, Illumina, Nimblegen, Agilent, and
other platforms.

– Perform quality assessment, normalization, differential
expression, clustering, classification, gene set
enrichment, genetical genomics and other workflows
for expression, exon, copy number, SNP, methylation
and other assays.

– Access GEO, ArrayExpress, Biomart, UCSC, and
other community resources.

88

Use of Bioconductor
• Sequence data

– Import fasta, fastq, ELAND, MAQ, BWA, Bowtoe,
BAM, gff, bed, wig and other sequence formats.

– Trim, transform, align and manipulate sequences.
– Perform quality assessment, ChIP-seq, differential

expression, RNA-seq, and other workflows
– Access the sequence Read Archive

• High throughput assays
– Import, transform, edit, analyze and visualize flow

cytometric, mass spec, HTqPCR, cell-based, and
other assays.

89

Use of Bioconductor

• Annotation
– Use microarray probe, gene, pathway, gene

ontology, homology and other annotations.
– Access GO,KEGG,NCBI, Biomart, UCSC, vendor,

and other sources.

http://www.genome.jp/kegg/

90

Getting started

http://www.bioconductor.org/install/

91

Getting started
• Go to

– http://www.bioconductor.org/packages/2.9/BiocViews.
html

• Software
• AnnotationData
• ExperimentData
• Extra

92

Bioconductor basics

•Installs the following libraries:Installs the following libraries:Installs the following libraries:Installs the following libraries:
affy, affydata, affyPLM, annaffy, annotate, Biobase,
Biostrings, DynDoc, gcrma, genefilter, geneplotter, hgu95av2.db,
limma, marray, matchprobes, multtest, ROC, vsn, xtable,
affyQCReport

... then you use e.g. library as before

vignette (package = "ROC") tells you to look
vignette("ROCnotes") for a worked example - a
very helpful introdection. (OR use e.g.
openVignette("ROC") from the Biobase package)

> source ("https://bioconductor.org/biocLite.E")
> biocLite()

93

Bioconductor basics

• To get other packages, use e.g.
biocLite("SNPchip")

• Do not need to type biocLite() after you
install (even in a new R session).

• This would install everything again, which
is harmless, but slow

94

Findind help

>library (affy)
#Loads a particular package (here affy package).
>library (help=affy)
#List all functions/objects of a package(here affy package)
>library()
#List all libraries/packages that are available on the system
>openVignette()
#Provides documentation on packages
>sessionInfo()
#Prints version information about R and all loaded packages

•Some help functions

95

Want to learn more?
• The official Bioconductor

website:http://www.bioconductor.org/
• Bioconductor workshops and

courses:http://www.bioconductor.org/help/course
-materials/

• R programming for bioinformatics by Robert
Gentleman

• Bioinformatics and Computational Biology
Solutions Using R and Bioconductor by Robert
Gentleman et al

• Bioconductor Case Studies by Florian Hahne et
al

96

Thank you...

