
Semantic Automated 
Discovery and Integration 

http://sadiframework.org 



Summary 

• SADI is a set of conventions for creating Semantic Web 
Services that can be automatically discovered and 
orchestrated. 

• SADI does not create new technologies or message 
formats. It relies on well-established standards: RDF, 
OWL and HTTP. 

• SADI service consumes an RDF graph with a designated 
node and produces an RDF graph about the same node 
with some new properties attached. 

• Declaration of the new property predicates describes 
the semantics of the service and makes it discoverable. 



Terminology 

• XML and XML Schema 

• Simple Object Access Protocol (SOAP) 

• Resource Description Framework (RDF) 

– Universal Resource Identifiers (URIs) 

• Web Ontology Language (OWL) 

• HTTP GET and POST 



Web Services 
  

vs. 
 

Semantic Web 
 



Web Services 
XML + XML Schema 

 
Semantic Web 

RDF + OWL 



Web Services 
POST of SOAP-XML 

 
Semantic Web 

GET of RDF-XML 



Web Services 
No (rigorous) semantics 

 
Semantic Web 

Rich, flexible semantics 



Web Services 
& 

Semantic Web 
 

 Fundamentally different 
technologies!  

 





>1000 X more data in the Deep Web 
than in Web pages 

 
In bioinformatics this is primarily 

databases and analytical algorithms 
 

Web Service output is critical to 
success for the Semantic Web!! 



SADI 

• Based on the observation of usage and 
behaviour of BioMoby Semantic Web Services 
Since 2002 

• Standards-compliant 

• Lightweight with only 2 “rules” 



What [most] bioinformatics 
Web Services do 



SADI “rules” a.k.a key practices 

1. Make the implicit explicit. 

– All service input and output data are RDF 
instances of OWL classes 

2. The URI of the input must be preserved in 
the output. 

– All URIs are “annotated” where the input 
becomes decorated by additional information 
instead of replaced 



Consequence 

“Semantics” of the interactions are now 

explicit 

 

“Semantics” of HTTP POST are identical to  
the “Semantics” of HTTP GET 

 

Therefore SADI Web Services  

behave like the Semantic Web 

 



SADI Service plug-in and client 

1. SADI plug-in to Taverna 

– A general-purpose workflow design tool 
designed to manage most Web Service, and 
handle data flow related to any domain of 
investigation. 

2. Semantic Health And Research Environment 
(SHARE) query client 



SADI in Taverna 

• Example: 

– What genes are involved in KEGG pathway 
"hsa00232"? What proteins do those genes code 
for? What are the sequences of those proteins? 



 



Using SADI services – building a workflow 

Type sadi kegg pathway genes into the Service panel Filter. 



Using SADI services – building a workflow 

Right click on the getKEGGGenesByPathway service and click Add to 
workflow. 



Using SADI services – building a workflow 

The service input and output ports are now shown in the diagram. 



Using SADI services – building a workflow 

To add an output to the workflow right-click on the workflow diagram 
and click Workflow output port. 



Using SADI services – building a workflow 

Name the output port gene and click OK. 



Using SADI services – building a workflow 

Drag a link from the service output port to workflow output gene. 



Using SADI services – building a workflow 

Right-click on the service output port and click Find services that 
consume KEGG_Record… 



Using SADI services – building a workflow 

Select getUniprotByKeggGene from the list of SADI services and click 
Connect. 



Using SADI services – building a workflow 

The getUniprotByKeggGene service is added to the workflow and 
automatically connected to the output from getKEGGGenesByPathway. 



Using SADI services – building a workflow 

The next step in the workflow is to find a SADI service that takes the 
proteins and returns sequences of those proteins. Right-click on the 
encodes output port and click Find services that consume 
UniProt_Record… 

 



Using SADI services – building a workflow 

The UniProt info service attaches the property hasSequence so select 
this service and click Connect. 

 



Using SADI services – building a workflow 

The UniProt info service is added to the workflow and automatically 
connected to the output from getUniprotByKeggGene . 

 



Using SADI services – building a workflow 

The KEGG pathway were interested in is "hsa00232”, so we’ll add it as a 
constant value. Right-click on the KEGG_PATHWAY_Record input port 
and click Constant value. 



Using SADI services – building a workflow 

Enter the value hsa00232 and click OK. 



Using SADI services – building a workflow 

The workflow is now complete and ready to run. 



Using SADI services – running the workflow 

To run the workflow click on the green arrow in the tool bar. Taverna will 
switch to the results view and start running the workflow. 



Using SADI services – viewing the results 

To see the all the results for an output click on the output tab for that 
output. To see an individual result click on the value in the result list. 

Output tab 

Result list 



Using SADI services – viewing the results 

When the value type is set to Text just the URL for the protein is 
displayed. 



 



 



SADI-Taverna Summary 

• Search for the property of the data you desire 

• Automatically adds the service 

– Correctly connected automatically 

• The SADI plugin handles parsing into and out 
of RDF format automatically and transparently 

– Easy to connect SADI with non-SADI services 



Powered by SADI 

Semantic Health And Research Environment 
SPARQL enhanced by SADI 

http://biordf.net/cardioSHARE/ 



http://biordf.net/cardioSHARE/ 

 



SHARE 

• Use SADI to automatically construct a workflow that 
creates a query-specific database. 

• Generates an RDF triple output containing the 

 <subject(input), object(output), predicate(relationship determined by service)>. 

• A SHARE query is resolved according to below: 
1. Each predicate in query is examined and any matching 

services are retrieved from the registry. 

2. The services are called upon, results converted to RDF, 
data is stored in local triple. 

3. The query engine is executed as normal against the local 
triple. 



What pathways does UniProt protein P47989 belong to? 
 
 
PREFIX pred: <http://sadiframework.org/ontologies/predicates.owl#> 
PREFIX ont: <http://ontology.dumontierlab.com/> 
PREFIX uniprot: <http://lsrn.org/UniProt:> 
SELECT ?gene ?pathway  
WHERE {  
 uniprot:P47989 pred:isEncodedBy ?gene .  
 ?gene ont:isParticipantIn ?pathway .  
} 











Show me the latest Blood Urea Nitrogen and Creatinine levels 
of patients who appear to be rejecting their transplants 

 
 

 
 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
PREFIX patient: <http://sadiframework.org/ontologies/patients.owl#>  
PREFIX l: <http://sadiframework.org/ontologies/predicates.owl#>  
SELECT ?patient ?bun ?creat 
FROM <http://sadiframework.org/ontologies/patients.rdf> 
WHERE { 
 ?patient rdf:type patient:LikelyRejecter . 
 ?patient l:latestBUN ?bun .  
 ?patient l:latestCreatinine ?creat .  
} 



Start burrowing through the LikelyRejector OWL class  
 find that we need a regression model OWL class 
 
“the regression line over creatinine measurements should have an increasing slope” 



Regression models have features like slopes and intercepts, and so on. 
The class is completely decomposed until a set of required Services are discovered 
capable of creating all these necessary properties 



Decomposition of the OWL class uncovers the need for a Linear 
Regression analysis on the patient blood chemistry data 



VOILA! 



Consequences 

• User gets to create their own definition and 
ontology 
– Ex. LikelyRejecter 

• It can be modified and re-used by the user, 
published for other users to use, modify and 
compare to their own world-view 
– The user’s personal world-view is explicitly expressed 

and can be dynamically evaluated against global data 
and knowledge 

– Ontology development is distributed and personal 
rather than centralized 



Reproducibility  

Hypotheses 

Discourse 

Disagreement 

Experiment 





Ontologically-expressed Hypotheses drive the discovery, assembly, 
 and analysis of data capable of evaluating their validity 

Blood Pressure 

Hypertension 

Ischemia 

Hypothesis 

Database 1 Database 2 

SADI 
+  

SHARE 

Analytical 
Algorithm 



Advantages 

• Design patterns are supported by an accompanying 
codebase and plug-in tools almost completely automated. 

• Simplifies the planning process for providers, by reducing 
the number of “arbitrary” decisions they need to make. 

• The specification was specifically designed to support 
multiplexed messages. Responses from each processor may 
simply be concatenated regardless of order. 

• Enforces other best-practices in Web development, thus 
helping providers generate robust, error-free systems, and 
tools are available to regularly evaluated and validated 
service functionality. 

• Not in conflict with any existing network security software 
or protection model. 



Limitations 

• Utility of SADI is entirely dependent on the 
number of providers who adopt its conventions. 

• There is an extensive tooling support for 
traditional Web services and there is a perceived 
simplicity of XML compared to RDF/OWL. 

• Success of the SADI architecture will largely 
depend on widespread re-use of publicly-
available and well-defined ontological predicates, 
and the definition of service inputs in terms of 
OWL restrictions on these properties. 



References 

• Tutorial/Demonstration slides from Prof. Mark Wilkinson of University of 
British Columbia at http://www.slideshare.net/markmoby. 

• SADI http://sadiframework.org. 
• SHARE http://biordf.net/cardioSHARE. 
• Wilkinson M, Vandervalk B, McCarthy L (2011). The Semantic Automated 

Discovery and Integration (SADI) Web service Design-Pattern, API and 
Reference Implementation. Journal of Biomedical Semantics 2:8 
doi:10.1186/2041-1480-2-8. 

• Withers D, Kawas E, McCarthy L, Vandervalk B, Wilkinson M (2010). 
Semantically-Guided Workflow Construction in Taverna: The SADI and 
BioMoby Plug-Ins. In Texts in theoretical computer science 301-312. 

• Wilkinson MD, Vandervalk B, McCarthy L (2009). SADI Semantic Web 
Services - ‘cause you can’t always GET what you want! In Proceedings of 
the IEEE APSCC. 

• Wilkinson M, Vandervalk B, McCarthy L (2008). CardioSHARE: Web 
Services for the Semantic Web. 


