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Abstract

Next generation sequencing (NGS) is increasingly being used for transcriptome-wide analy-
sis of differential gene expression. The NGS data are multidimensional count data. There-
fore, most of the statistical methods developed well for microarray data analysis are not
applicable to transcriptomic data. For this reason, a variety of new statistical methods
based on count data of transcript reads have been correspondingly proposed. But due to
high cost and limitation of biological resources, current NGS data are still generated from a
few replicate libraries. Some of these existing methods do not always have desirable perfor-
mances on count data. We here developed a very powerful and robust statistical method
based on beta and binomial distributions. Our method (mBeta t-test) is specifically applica-
ble to sequence count data from small samples. Both simulated and real transcriptomic
data showed mBeta t-test significantly outperformed the existing top statistical methods
chosen in all 12 given scenarios and performed with high efficiency and high stability. The
differentially expressed genes found by our method from real transcriptomic data were vali-
dated by gPCR experiments. Our method shows high power in finding truly differential ex-
pression, conservatively estimating FDR and high stability in RNA sequence count data
derived from small samples. Our method can also be extended to genome-wide detection
of differential splicing events.

Introduction

The optimization of next generation sequencing (NGS) technologies in recent years [1,2,3] has
led sequencing cost to rapidly decline so that the sequencing technologies as platforms for
studying gene or sub-gene expression have become more and more attractive([4,5,6]. Current
NGS technologies such as Tag-seq [7], deepSAGE [8], SAGE-seq [9], and PAS-seq [10] can
generate short reads of sequences, that is, sequences of 35-300 bp that correspond to fragments
of the original RNA. In particular, 3P-seq or PAS-seq[10], a deep sequencing-based method
for quantitative and global analysis of RNA polyadenylation has been broadly used to study ex-
pression behavior of RNA isoforms in a variety of human and mouse cells.
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To evaluate differential expression between conditions or cases, sequences need to be
mapped to a reference genome and annotated. After doing so, the sequence data can be trans-
formed to read count data at the genomic level of interest. Although RNA-Seq technologies
can be used to study differential transcription of exons, splice-variants, isoforms-specific
[11,12,13,14] and allele-specific expression[15,16], our focus here is on differential expression
of genes or mRNA isoforms due to differential splicing or alterative polyadenylation signals
and cleavage sites in 3’ untranslated regions (3’UTR).

A NGS library may be thought of as a population of sequences and each sequence as an indi-
vidual of this population. Sequencing an NGS library is a random process of sampling from
this population. If each individual sequence tag has an equal chance to be selected for sequenc-
ing, then the probability of sequencing a RNA sequence will be proportional to the length of
waiting time [17]. In this case, counts of reads for a given transcriptomic feature should follow
the Poisson distribution, which indicates that only one parameter determines the variation of
read counts. However, some read counts are over-dispersed between samples and cannot be ex-
plained by the single-parameter model. This is because the Poisson model has only one varia-
tion source. Actually, variation of many read counts derives from noise and biological effects.
This is characteristic of negative binomial (NB) distribution [17,18] and binomial distribution.

To identify differential expression of RNA tags, many statistical methods have been devel-
oped so far based on normal approximation [19,20,21], permutation [22], beta distribution
[23] or over-dispersed logistic/over-dispersed logistic linear distribution [24]. As RNA count
data have become more and more prevalent, newer statistical methods such as edgeR Exact test
[18], empirical Bayesian [25], DESeq [17], generalized linear modeling (edgeR GLM) [4], and
likelihood ratio test [26] have recently been proposed.

Despite the development of technologies dramatically reduces costs of sequencing, RNA se-
quencing experiments are still limited to a few replicate libraries for a condition or a case. The
basic need to assess differential expression within the context of biological variation remains
undiminished, but this problem becomes complicated by the fact that different mRNA tran-
scripts may have different degrees of biological variation. There is a need to estimate biological
variation as reliably as possible from a limited number of replicate libraries [4]. To address this
problem, existing statistical methods such as empirical Bayesian (baySeq) [25], DESeq [17] and
edgeR Exact test[18] adopt variation information, that is, common dispersion, across the tran-
scriptome. In contrast, edgeR GLM [4] uses genewise or tagwise dispersion. However, none of
these methods considers a transcript-by-transcript “fudge effect” resulted from small samples.
So-called fudge effect is such an effect that small samples lead to more chance of decreasing
within-group variances and occurrence of gap events between groups. This is because in high-
throughput data, small sample sizes would have a small chance that samples are drawn from
terminals of distribution so that difference among replicates becomes small. Therefore fudge
effect would results in inflation of statistics [27,28] which easily gives rise to false discoveries.
The fudge phenomenon broadly exists in high-throughput data especially in transcriptomic
data because there are a lot of very small counts (see Discussion Section for more detail). Sup-
pressing such an effect can greatly improve the performance of statistical methods in identifica-
tion of differentially expressed mRNA transcripts. To do so, we are required to develop novel
methods based on a way different from edgeR GLM, edgeR Exact test and DESeq.

Our development work is based on Baggerly et al’s [23] work because this method is not
sensitive to data distributions (see Discussion Section). Beyond this, the Beta t-test approach
uses weights to exclude artificial or technical noise in count data and thus identifying differen-
tially expressed transcripts with higher probabilities. The third, a very important point, is that
the Beta t-test is a t-test method that is a classical distance-variance test approach and very
clear and simple to understand differential expression of RNA isoforms but the Beta t-test is
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significantly susceptible to the fudge effect. For these reasons, we are highly motivated to devel-
op a new approach specially working on count data of RNA sequences derived small samples.

Material and Methods
Cell lines and stimulation

Jurkat T-cell lines were obtained from the ATCC and maintained in RPMI (ATCC) with 10%
fetal bovine serum supplemented with penicillin and streptomycin (Gibco). The cells were
stimulated for 48 hours in plates coated with a solution of 1 mg anti-CD3 (OKT3—eBios-
ciences) and 5 mg anti-CD28 (CD28.2—BD Pharmingen). Activation was monitored via flow
cytometric detection of CD69 expression (FN-50) 16-24 hours after stimulation.

High-throughput sequencing library generation

Total RNA was harvested from resting and stimulated T-cells with Trizol reagent (Life Tech-
nologies) following the manufacturer’s protocol. Polyadenylated RNA was isolated with the
Poly(A)-Purist MAG (Ambion/Life Technologies) kit as per manufacturer instruction. Librar-
ies for high-throughput sequencing were constructed essentially as described [10], with the ex-
ception that “barcoded” linkers were used to facilitate multiplexing. Libraries were sequenced
via 75 bp paired-end sequencing on an Illumina GAIlx in the Genomic and RNA Profiling
Core at Baylor College of Medicine.

Annotation and pipeline analyses

Sequence reads were mapped to the UCSC mm9 build of the mouse genome with bwa version
0.5.9 [29], using the paired-end mapping module, default alignment stringency, and requiring
uniquely mapped proper pairs. To rescue reads crossing splice junctions, non-mapping reads
were remapped to the UCSC KnownGene reference and then again projected to mm9. Mapped
reads were collected into distinct polyadenylation sites (isoforms) based on the mapping coor-
dinate of their 3' ends. Briefly, all reads mapping within a 20-nucleotide sliding window were
merged, using the frequency-weighted median 3' end as the formal tag identifier. Isoforms
were then filtered for false priming using a progressively filtering strategy assessing adenosine
and guanine composition in the five, ten, and fifteen bases followed the isoform-mapping site.
Isoform reads were counted and annotated using UCSC KnownGene annotations. For each in-
dividual transcription unit, the annotated poly(A) sizes were ranked in descending order by
count. Beginning with the isoforms expressed at the highest frequency, isoforms were collected
until the frequency of the collected isoforms surpassed 90% of the aggregate reads for the tran-
scription unit. The remaining isoforms were then discarded. The counts of isoforms in all li-
braries were then normalized using a negative binomial model with DESeq [17] so that all
replicate libraries had the same size.

gRT-PCR

Total RNA was isolated from resting and stimulated (48 hours) Jurkat T-cells using Trizol
(Invitrogen) and digested with DNase I (Invitrogen) to remove contaminating genomic DNA.
One microgram of total RNA was used to template cDNA synthesis using oligod(T) Super-
Script III Reverse Transcriptase. Real-time PCR was performed in triplicate with gene-specific
primers and the Bio-Rad SYBR FAST iCycler qPCR kit (Kapa Biosystems) on a Biorad CFX96
real-time thermal cycler. The AACt method was used to calculate expression relative to TBP.
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Simulations

To evaluate statistical properties of various approaches, we used the negative binomial (NB)
pseudorandom generator to create count datasets of RNA isoform reads in 12 scenarios, each
repeated three times for calculations of means and standard deviations. Our simulations were
based on our Jurkat T-cell isoform data which comprise of 18290 isoforms, two conditions
(resting and stimulating states) and 3 replicated libraries. Baseline data were generated by
using R rnbinom function with mu = mean and size = variance of each isoform from any one
of two conditions. We set two levels (A = 100 and 300) of condition (or treatment) effect on
differential transcription of isoforms and linearly and randomly assigned the effect 1 = UA to
isoforms that are defined to be differentially transcribed where U is uniform variable (U € (0,
1]), two levels of proportions of differentially transcribed isoforms: P = 10 and 30%, two levels
of artificial noise proportions: Q = 10 and 30% and two levels of sample sizes: R = 3 and 5 repli-
cate libraries. Here artificial noise (also called technical noise) indicates that the artificial noise
does not come from biological system but comes from technique operations such as sequenc-
ing, mapping, assembling and pipeline analysis etc. In our simulated data, isoforms with aver-
aged read count <5 were filtered and all replicate libraries have the same size, thus 18162
isoforms were available for analysis.

Software package

This package for mBet t-test was written in Matlab and R languages. Matlab package consists
of 9 Matlab files, two real data files and two geneid files, one simulated data files with one gen-
eid file, and one user guidance file. This Matlab package can be found in S1 File. R mBet ttest
package can be found in Bioconductor.

Results
t-statistic

Here we follow the notations of Baggerly et al (2003) [23]. Let X; be the count of an mRNA
transcript isoform of interest, herein defined by polyadenylation site identity, in library i. In
our analysis, each of the isoforms derived from a given transcription unit is viewed as an inde-
pendent entity rather than being collapsed to a single representation of the transcription unit.
Let p; be the true proportion of the isoform in library i and N; be the total counts in library

i, that is, the size of library i. We suppose that the proportion p; of an isoform in library i fol-
lows a beta distribution,

p; ~ Beta (o, ) (1)

while the count for an isoform will follow a binomial or negative binomial distribution. In our
current study, we consider the binomial distribution instead of negative binomial distribution
(see Discussion Section). Since p; = X, /N, is an estimate of p;, the mean and variance of the
estimated proportion for this isoform in library i are given by o, f and N; (see Appendix A in
S2 File).

Considering the case of a limited number of replicates, we use weight to reduce biases of
the estimate of proportion p against its expectation and variance of the estimated proportion
p- Supposing that we have m replicate libraries in a condition, the mean and variance of
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proportions in m replicate libraries can be linearly given by weights [23]:

E(Y ) = Yo mEG) = > -

i=1

(24)

(O ZWV@ Z(aw)ﬁafml)[aiﬂ*&] e

i=1

where the sum of weights over m replicates is constrained to be 1. Eq (2A) indicates that this
combination does not change expectation of proportion p. Using a partial derivative of vari-
ance of weighted proportions with respect to weights, the solution for weight vectors can be
given via use of Lagrange multipliers[23][30]:

o el ?)

Eq (3) indicates that the weights are determined by the means and sizes of the libraries.
Here two extreme cases may occur: If & + § — 00, then the weight w; is proportional to the size
(N;) of library i, meaning that the distribution of p; is degenerate. In this case, there is no change
in the true proportion going from sample to sample. If, on the other hand, & + f is very small,
then the weights are roughly the same for all libraries. The true optimum lies somewhere in be-
tween. With the weights, the proportion p for an isoform read count in a condition is now esti-
mated by

p= Z wp; (4)
i=1

and its variance is also estimated in an unbiased fashion by

- Zzil(wii)i)z - Lw)p?
1—(3Chmw)

(5)

Since we have weights for all parameters (o, §, p, and V*) and p; in a given condition, then
an iterative search algorithm for optimal estimation of these parameters can be driven by
weights (see Appendix B in S2 File).

Even if the estimation of variances of proportions in a condition is unbiased and optimized,
mRNA isoforms represented by an extremely small number of observations would have very
small and similar proportions in few replicate libraries. As a result, the t-values are inflated for
the reason that the variances will be much smaller than the differences between means. To
avoid this phenomenon, a modified estimator of variance is:

V = max[V", V7]. (6)

In Baggerly et al [23], Vs given by

1— Zil ’)
v = Zm NZ ’ (7A)
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From Eq (7A), we can find that Z{le > allows the variance V" to become extremely small. To

(Zi:]N‘)

avoid this possibility, we modify V" as

1+Z:":1x, (1 1+Z:”1X,.)

N A D

V#: fol . - 2171 (7B)
ZZ:‘:1N1'

v in Eq (7B) is larger than that in Eq (7A). v’ > V* when Zil X, is extremely small. Thus

V = V" in case of extremely small V*.

By the above optimal estimation, we obtain p, and p,, V, and V, in conditions A and B, re-
spectively. Using these estimates, the t-statistic (similar to the Z-statistic suggested by Kar et al
[19]) is found to be

f = p:A — pBA (8)
VA VB
with degrees of freedom
0 L7
ap = Lot Vel ©)
e

[23]where N, = Z::A] N, and N, = ZMB1 N,; [23]. With degree of freedom, we can obtain a

=1 *VBi
p-value for each t-statistic from the t-distribution. However, since the number of experimental
or technical replicates utilized in a general transcriptional profiling experiments is very small
(e.g. 3 per condition), undue significance is assigned to small differences between two means.
Although Eq (6) inserts another estimator of variance as a lower bound to avoid the occurrence
of extremely small or zero variance, the potential for small sample sizes leading to undue signif-
icance is not excluded in Eq (8). To remove this potential, we introduce a gene-by-gene or iso-
form-by-isoform variable p to Eq (8) and obtain a new t-statistic

t*_pg IA)Ag_IA)Bg
P oS -
VAg+VBg

(10)

where p, = /(. that s, p, is defined as geometric mean of y, and {g. p = Yy = { Iy, = (.

Here y, is referred to as the “polar ratio” for measuring gap between two count sets of gene or
isoform g (see Appendix Cl in S2 File). Equation (Cl1) indicates that if two count sets X, =

{Xogrr s Xugm, ) and Xy = {Xp ), - - -, X, ) for an isoform do not overlap, then y, > 1, oth-
erwise,. ¥, < 1. In statistical theory, two count sets that are definitely separated have a higher
probability of showing that they come from two different distributions than those that overlap.
(g is referred to as log “odds ratio” (see Appendix C2 in S2 File).

For isoform g, noise (averaged difference between maximum and minimum counts within
conditions) is smaller than conditional effect or treatment effect and noise variance is small, then
there would be a gap between two count sets so that y, >1 and {, >1, leading to p, > 1 (we will
prove this conclusion elsewhere). For example, suppose that we have count sets X, = {112,122,
108,127} and X = {302, 314, 322, 328}. The noise = 22.5 and noise variance = 101 are smaller
than conditional effect = 119.25. Obviously, there is a bigger gap between count sets X, and Xg.
These two count sets have small noise variation. Our calculation shows ¥ =2.34 and { = 1.71, so
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p =2.0 >1, which is consistent with observation. Another example is X, = {511, 230, 754, 335}
and Xg = {771, 842, 1014,798}. The noise = 281 is smaller than conditional effect = 398.8 but
noise variance = 32214.3 is larger than conditional effect. One can visually see that these two
count sets have a gap but their homogeneity is poor (big noise variance). Our calculation that
shows y=1.02>1,{ =0.38<1 and p = 0.623<1 is again agreeable with observation. The t*-sta-
tistic is potentially preferable to t-statistic in two aspects: (1) isoforms with small counts are not
easily found to have differential expression and (2) t-values with p, > w are inflated but those
with p, < w are shrunken. w is a threshold. w directly affects the performance of mBeta t-test: the
larger w is, the more t*-values with p, < w are shrunken, the less those with p, > w are inflated.
w is determined by the null simulation based on the real data. Here we use the simulated null
data to perform our mBeta t-test with setting p = 1 and w = 1, find false DE isoforms, calculate
their p values, then order them from the smallest to the largest, p; < p, <---p; <--- < pi, and
calculate quantiles. We set q, = 1/k, g, = 2/k, - - -, g; = jlk, - - - g = 1 where k is number of false
discoveries in a null simulated dataset. Setting g; > 0.85, then we choose w = p; value. This means
that 85% false discoveries would have p; < w and be excluded. This process is done on all given

simulated null datasets. We choose @ =1 Zszl o, over S simulated null datasets. The p-value

for each t*-value can be obtained from t-distribution using degrees of freedom given or by per-
forming the bootstrap [31] (see Appendix D in S2 File).

Comparison of mBeta t-test to existing statistical methods

We used the 12 scenario stimulation datasets (see Simulation in MATERIALS AND METH-
ODS) to compare our method to the five top statistical methods for identifying isoforms differ-
entially transcribed between two given conditions. The five statistical methods chosen here are
Beta t-test [23], empirical Bayesian (baySeq)[25], edgeR Exact test [18,32,33], edgeR GLM [4],
and DESeq [17]. The baySeq method was implemented in R package baySeq and the edgeR
Exact test and edgeR GLM methods in R package edgeR[34]. DESeq was implemented by R
package DESeq[17]. The Beta and mBeta t-test methods were performed in Matlab. We chose
FDR cutoff = 0.05 as acceptable level for differential expressions (DE) of isoforms because the
FDR cutoff of 0.05 is widely used in multiple tests, especially, in genome-wide studies. We
counted isoforms identified to be differentially transcribed by these methods and false discov-
eries and calculated means and standard deviations (SD) of the numbers of findings and true
FDRs for each method chosen and then summarized them in Tables A-C in S3 File. For small
condition effect (A = 100) or low artificial noise proportion (Q = 10%) or low proportion

(P =10%) of DE isoforms, the Beta t-test method had higher power. In the case of low P or
small A, mBeta t-test, baySeq, edgeR Exact test and edgeR GLM had similar powers, while in
higher P and larger A scenarios, Beta and mBeta -test had lower powers than baySeq, edgeR
Exact test and edgeR GLM. In all 12 scenarios (Tables A-C in S3 File), DESeq had very low
powers. This is because DESeq always had extreme overestimation of FDRs, indicating that
DESeq is a very conservative method that would miss many true differentially expressed iso-
forms in practice. Beta t-test had much higher true FDRs than its estimated FDRs in all these
scenarios, meaning that in the findings of the Beta t-test method, there would be many more
false discoveries than estimated, so this is not a conservative method. baySeq showed higher
powers in low artificial noise proportion (Tables A and C in S3 File) but it also had higher true
FDRs than estimated FDRs in most cases. In high artificial noise proportion (Q = 30%) scenar-
io, baySeq performed well (Table C in S3 File). edgeR GLM showed high powers in all 12 given
scenarios but its true FDRs were much larger than estimated in 9 scenarios (Tables A-C in S3
File), suggesting that this method is also not conservative. In low DE isoform proportion

(P = 10%), low artificial noise proportion (Q = 10%) or small condition effect (A = 100)
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scenario, edgeR Exact test performed poorly because its true FDRs were much larger than its
estimated values in most cases, however, in high P(30%), high Q(30%) and large A (300) sce-
narios, edgeR Exact test had good performance. Similarly to DESeq, mBeta t-test also had
lower true FDRs than its estimated values in all 12 given scenarios but it had much higher
power than DESeq (Tables A-C in S3 File), showing that the mBeta t-test method is conserva-
tive and powerful.

Stability is an important property of a statistical method. To rate stabilities of these statisti-
cal methods in performance, we used standard deviations (SD) of finding numbers and true
FDRs listed in Tables A-C in S3 File as criterion. Small SD means that this method has a small
fluctuation and hence a high stability in identification of DE isoforms, while larger SD indicates
that it has a bigger fluctuation and hence lower stability. Thus, for each scenario we set, we or-
dered these methods by using SD from the smallest to the largest, assigned order scores (from
1 to 6) to them and averaged their order scores over 12 scenarios. Thus, the order score can be
used to measure relative stability of a method: the smaller order score, the higher stability.
Table 1 summarizes the results of stability analysis. For findings, mBeta #-test had the highest
stability, while edgeR GLM had the lowest stability. Beta ¢-test, baySeq, DESeq and edgeR Exact
test got similar order scores and so they had proximate stabilities. For true FDR, as expected,
DESeq showed the highest stability. mBeta ¢-test was in the second highest rank. edgeR GLM
and Beta t-test were lowest. edgeR Exact test and baySeq showed similar stabilities.

To globally evaluate each of the six statistical methods, we employed the simulated data in
scenarios 1 and 4 to generate Receiver Operating Characteristic (ROC) curves. Fig 1 shows the
ROC curves did not reveal a substantial difference among the methods. The mBeta t-test meth-
od performed best at 1-specificity value < 0.3 in scenario 1 (Fig 1A) or < 0.5 in scenario 4 (Fig
1B). DESeq produced a slightly higher sensitivity than mBeta t-test when 1-specificity > 0.3 in
scenario 1 (Fig 1A) or > 0.5 in scenario 4 (Fig 1B). Comparatively, edgeR Exact test and edgeR
GLM had almost the same curve. The baySeq method performed poorly relatively (Fig 1).

Next is to comprehensively rate these statistical methods. We define efficiency (w) of a sta-
tistical method as

w= 0@ (11)

where ¢ = % Here Nyrepresents the number of isoforms found to be truly and differentially

expressed by a statistical method, Np = NP is a given number of differentially expressed iso-
forms in N isoforms given in the simulated data and P, the proportion of DE ioforms given in
the simulation. ¢ is index. Given FDR cutoff o, ¢ = 1 if true FDR < o or ¢ = 0 otherwise. Thus,
¢ is used to measure power (ability or probability) of a statistical method for identifying a dif-
ferentially expressed isoform while ¢ measures conservativeness of this method under a given
FDR cutoff. Efficiency is power with given FDR cutoff o. and similar to that with given

Table 1. Stability analysis of statistical method performance on simulated data in 12 scenarios.

Standard Deviation of Findings Standard Deviation of True FDRs
Method Averaged Order Score Method Averaged Order Score
mBeta t-test 2.33 DESeq 1.83
edgeR Exact test 3.17 mBeta t-test 2.50
Beta t-test 3.25 baySeq 3.00
baySeq 3.42 edgeR Exact test 3.50
DESeq 3.83 Beta t-test 5.08
edge R GLM 5.00 edgeR GLM 5.08

doi:10.1371/journal.pone.0123658.1001
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Fig 1. ROC Comparison among Statistical Methods for Differential Expression Analysis of NGS Data.
ROC curves of the baySeq, edgeR Exact test, edgeR GLM, DESeq and mBeta t-test methods were
constructed from simulated datasets. Sensitivity is defined as the true positive fraction (TPF) and specificity is
defined as the false positive fraction (FPF). A: Simulated data from scenario 1 (proportion of differentially
expressed isoforms = 10%, technical noise proportion = 10%, treatment effect A = 100, and sample size = 3).
B: Simulated data from scenario 4 (proportion of differentially expressed isoforms = 30%, technical noise
proportion = 10%, treatment effect A = 300, and sample size = 3).

doi:10.1371/journal.pone.0123658.g001

significance level o in single hypothesis test. The performance of a method must be evaluated
by its power and conservativeness. If a method has high power to find DE isoforms with low
degree of conservativeness, its findings would then be unreliable and incredible; if a method
has low power with high degree of conservativeness, the method would then loss many true
positives. So such two types of statistical methods would have low efficiencies in identification
of DE isoforms.

Table 2 lists efficiencies of the six statistical methods in several scenarios. From Table 2, one
can find that the baySeq and edgeR GLM methods had higher efficiencies in 3 replicate libraries
than in 5 replicate libraries. This is because in the case of five replicate libraries, the two meth-
ods underestimated their FDR at cutoff & = 0.05 (Tables A-C in S3 File) so that they lost con-
servativeness. Beta t-test had efficiency of zero in all scenarios. edgeR Exact test had lower
efficiencies in scenarios with low P, low Q, small A, and 3 replicates than in scenarios with high
P, high Q, large A, and 5 replicates. For both the DESeq and mBeta ¢-test approaches, the

Table 2. Efficiencies of statistical method performance on simulated data in 12 scenarios.

Scenario factors baySeq edgeR Exact edge GLM DESeq beta t-test mBeta t-test
test
mean SD mean SD mean SD mean SD mean SD mean SD

3 replicate libraries 0487 0321 0373 0407 0276 0388 0576 0.151 0.000 0.000 0.692 0.120
5 replicate libraries 0.000 0.000 0463 0.538 0.000 0.000 0.813 0.151 0.000 0.000 0.871 0.072
proportion of DE genes/isoforms =10% 0.310 0.353 0.132 0.324 0.000 0.000 0.638 0.094 0.000 0.000 0.753 0.144
proportion of DE genes/isoforms =30% 0.328 0.368 0.498 0430 0.169 0.318 0.668 0.189 0.000 0.000 0.763 0.150
technical noise proportion = 10% 0.318 0.368 0.212 0423 0.213 0426 0.629 0.198 0.000 0.000 0.730 0.119
technical noise proportion = 30% 0.328 0.368 0.498 0430 0.169 0318 0668 0.138 0.000 0.000 0.763 0.150
condition effect = 100 0.383 0.303 0.235 0376 0.095 0232 0543 0.198 0.000 0.000 0.661 0.121
condition effect = 300 0.267 0413 0570 0.448 0273 0423 0.767 0.164 0.000 0.000 0.843 0.077
doi:10.1371/journal.pone.0123658.1002
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efficiencies were greatly raised with increment of sample size. This is due to the fact that the
two methods increased their powers without losing conservativeness when sample size in-
creased. Similar results also can be observed in condition effects A = 100 versus A = 300. The
efficiencies of the two methods did not significantly respond to change in proportion of DE iso-
forms and artificial noise proportion. However, in all simulated scenarios, the mBeta t-test
method had the highest efficiencies.

Since simulated data are generally made from a known distribution and all factors impact-
ing differential expression are well controlled, simulation evaluation has a limited significance
for application of the methods to the real world data. However, since everything, in particular,
noise distribution in real world data is unknown, it is impossible to conduct a direct evaluation
of statistical methods by comparison of true FDRs to estimated ones. We thus employed an in-
direct way for this comparison using two real transcriptomic datasets of our laboratory.

We utilized a PAS-seq [10] approach to assess relative expression changes occurring upon
antigen receptor stimulation of the Jurkat CD4" T cell line, comparing three experimental rep-
licates of non-stimulated cells to an equivalent number of replicates cells stimulated for 48
hours. Following mapping, normalizing, and filtering of the data sets (see MATERIALS AND
METHODS), we observed 13409 mRNA isoforms (again, with the working definition of cleav-
age and polyadenylation site usage) in 9572 genes. Relative expression of an mRNA isoform
was measured by using read counts of this mRNA isoform and gene expression was repre-
sented by sum of read counts over all mRNA isoforms mapping to a known transcription unit.

We used these two transcriptomic datasets to evaluate these six chosen statistical methodol-
ogies. The baySeq method returned an NA result in the gene data and no results in the isoform
data after running for over two days on a 12-core Mac server. In contrast, the edgeR GLM
method identified 4376 (45%) genes and 5039 (37%) isoforms, respectively, of being differen-
tially expressed at FDR cutoff of 0.05. This high rate of findings in both gene and isoform data-
sets is doubtable. Highlighting its high degree of conservativeness and stringency, DESeq
found only 261 (3%) differentially expressed genes and 287 (2%) differentially expressed iso-
forms, respectively. The numbers of differentially expressed genes and isoforms identified by
the edgeR Exact test, Beta t-test, and mBeta t-test methodologies fell in between these two ex-
tremes (Table 3) and were examined further.

In the next step, we compared the findings of the edgeR Exact test (799 DE genes), Beta ¢-
test (2515 DE genes), and mBeta t-test (1774 DE genes) using Venn diagram. The three meth-
ods commonly identified 554 genes having differential expressions (Fig 2A). Outside of this
common set, 22 differentially expressed genes were commonly identified by the edgeR Exact
test and mBeta t-test, whereas three differentially expressed genes were commonly identified
by the edgeR Exact test and Beta t-test. Analysis of the isoform dataset revealed a similar result
(Fig 2B).

Table 3. Performances of Three Statistical Methods on Jurkat PAS-seq Data.

Data Type edge R Exact test mBeta t-test® Beta t-test

Gene Count Data # of DE Genes Found 799 1774 2515
Estimated FDR 0.0499 0.0499 0.0489
Least True FDR 0.2753 0.0056 0.3062

Isoform Count Data # of DE Isoforms Found 1029 1981 3025
Estimated FDR 0.0499 0.0498 0.0499
Least true FDR 0.2799 0.0101 0.3530

aw=1

doi:10.1371/journal.pone.0123658.t003
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Exact test (799) Betat-test(2515) Exact test (1029) Beta t-test (3025)

mBeta t-test(1774) mBeta t-test (1981)

A: DE genes B: DE isoforms

Fig 2. Differential Expression Venn diagram. Numbers of edgR Exact test findings, Beta t-test findings and
mBeta t-test findings are listed in red, yellow and green cycles, respectively. In DE genes (A) and DE
isoforms (B), 98% of mBeta t-test findings are the same with Beta t-test findings, the edgeR Exact test
method has about 70% of findings that overlap with Beta t-test and mBeta t-test findings.

doi:10.1371/journal.pone.0123658.9002

Within this comparison, if a gene or isoform is found to be differentially expressed by only a
single method, then it is highly possible that this differentially expressed gene or isoform is a
false discovery. Fig 3 visualizes heat maps of the ten genes specifically identified by the mBeta
t-test method (Fig 3A), the 770 genes identified solely by the Beta t-test (Fig 3B), and the 220
genes identified only by the edgeR Exact test (Fig 3C). Indeed, the genes identified only by a
single method do not display obvious differences in expression between the non-stimulated
and stimulated states. We defined no share ratio of findings (m; / M; where m; is number of
method i-specific findings, and M; is numbers of findings identified by method i) as the least
true false discovery rate (where the least true FDR corresponds to the g-value defined by Storey
et [35]). Using this indirect method, we obtained the least true FDRs for the findings of the
edgeR Exact test, mBeta t-test and Beta t-test methods, respectively, in our real PAS-seq data-
sets (Table 3). From Table 3, one can see that edgeR Exact test and Beta t-test severely underes-
timated their FDRs, while the mBeta ¢-test still overestimated FDR in its findings. This is
consistent with the results obtained from the simulated data.

To see why mBeta t-test method had so high efficiency and stability, we used plot of log fold
change against t-value to compare Beta f-test to mBeta t-test (see Fig 4). In Beta t-test, t-value
distributes from -16 to 16, while in mBeta t-test, t-value distributes from -70 to 120. On the
other hand, Fig 4 shows that Beta t-test has acceptable region of -4 to 4 and many false discov-
eries scattered in two rejection regions nearby acceptable region while mBeta -test significantly
compresses acceptable region to a very narrow interval close to zero such that the false discov-
eries (blue dots) are significantly reduced.

Experimental validation

To validate the findings of the mBeta t-test, we carried out quantitative PCR experiments using
RNA derived from resting Jurkat T-cells and Jurkats stimulated via the antigen receptor for 48
hours. We randomly chose genes that were identified by the mBeta t-test method to be in-
crease, decrease or not change in expression. The RNA-seq and qPCR data were compared
using both relative differences between stimulation and rest and relative variation coefficient

PLOS ONE | DOI:10.1371/journal.pone.0123658 April 20, 2015 11/18
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Fig 3. Heatmaps of Expressions of Transcripts Identified Only by Single Statistical Methods from Real Transcriptomic Datasets. A: 10 Isoforms
were specifically called differential expression by mBeta t-test. B: 700 isoforms were specifically found to be differentially expressed by Beta t-test. C: 220 DE
isoforms were defined only by edgeR Exact test. NS: non-stimulated cells. 48h: stimulated cells via antigen receptor for 48 hours. A, B, and C are replicates.

doi:10.1371/journal.pone.0123658.g003

(VC). Genes UBL3, MST123 and KIAA0465 that were up-regulated to respond to stimulation
(blue columns in Fig 5A) in RNA-seq data also displayed positive response to stimulation in
qPCR data (red columns in Fig 5A). Gene CD47 negatively responded to stimulation in both
datasets while gene TESK2 was not detected to have significantly difference between stimula-
tion and rest in these two datasets. In expression direction and relative expression amount,
these two datasets show cc = 0.9 (Pearson correlation coefficient) (Fig 5A), suggesting that our
transcriptomic data are agreeable with qPCR data. Relative VC analysis revealed that the UBL3
gene had small noise variation in these two datasets while the expresssion variation in the
TESK?2 gene across 3 replicates was relatively high (Fig 5B). This explains why the UBL3 gene
was identified to be differentially expressed but the TESK2 gene was not, even though both of
these genes had comparatively small counts of reads in the transcriptomic data.

Discussion

Although our simulation data were made from the NB distributions, Beta and mBeta t-test
worked well if we do not consider whether estimated FDRs were or not over true FDR”. The
baySeq, edgeR GLM, edgeR Exact test, and DESeq approaches are merely based on the NB distri-
bution. Therefore, for real datasets whose distributions are often unknown, mBeta t-test will per-
form well. For example, as seen in RESULTS Section, baySeq and edgeR GLM, DESeq performed
poorly on our isoform and gene data, while edgeR Exact test, Beta t-test and mBeta t-test worked

PLOS ONE | DOI:10.1371/journal.pone.0123658 April 20, 2015 12/18
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Fig 4. Plot of Log Fold Change versus t-statistics. t-values were obtained by the two Beta t-test methods
from the simulated data in which values t = 100U were assigned to 10% of genes for differential expression
between two given conditions each with three replicates. LogFC on y-axis represents log fold change in
expression. In the Beta t-test method (A), t-value was distributed in the interval between -16 and 16 and
acceptable region for non-differential expression was spanned from -4.0 to 4.0. Many false positives (blue
dots) were found in two rejection areas. But in the mBeta t-test method (B), the interval for t-values was
enlarged to span from -70 to 120 and the acceptable region for non-differential expression was strongly
compressed into a narrow interval close to zero so that few false positives (blue dots) were found in
rejection areas.

doi:10.1371/journal.pone.0123658.9g004

even though their results had big differences. We also applied these methods to our another real
transcriptomic data containing 10299 genes (not yet published), the results show that except bay-
Seq had very low power (it just found 165 DE genes), edgeR GLM, edgeR Exact test and mBeta

A BMRNA-seq  MgPCR cc=0.9 B = 0h RNA-seq = 0h qPCR
m48h RNA-seq m48h gPCR
4 A 3
. <
.g- 3 ; 25
-]
E 2 1 éo 2
51 -
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[ g 1
= |
g 05
g 5,
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-3 J

UBL3  MST123 CD47 KIAAD465 TESK2
UBL3 MST123 CD47  KIAAD465  TESK2

Fig 5. RT-PCR Validation of Differential Expression. A: comparison of relative expressions of five genes in PAS-seq to their relative expressions in
gRT-PCR. In PAS-Seq data, relative expression of a gene is defined as dg/a where d, =, — ), dis the averaged value of d, over three replicates, g =
UBL3,MST123,CD47, KIAA0465 or TESK2, n is the averaged count of reads over three replicates and t = 48 hours of stimulation. The-AAC+ method was
used for representation of gRT-PCR data and TBP (TATA binding protein) was used as a reference. B: Relative expression variation coefficients of the five
genes in PAS-seq and gPCR data. Relative expression variation coefficient is defined as VC,, /VC, where VC, =n,/s, and VC, is the averaged variation
coefficient over all selected genes at time t of stimulation and s, is sample standard deviation of gene g at stimulation time t.

doi:10.1371/journal.pone.0123658.g005
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t-test identified respectively 780, 733 and 711 DE genes and hence performed very similarly.
These suggest that baySeq and edgeR GLM may be specific to the NB distribution.

In addition, in genome-wide data, especially, in transcriptomic data, sample sizes usually
are very small, for example, 4 or 3 replicate libraries in each condition due to high cost, limita-
tion of biological resources and experimental conditions. Small sample size would easily lead to
a fudge effect [27,36]. In count data containing more than ten thousands of isoforms, for exam-
ple, 3-replicate count sets would have larger probability of showing small noise variation than
5-replicate count sets. On the other hand, in transcriptome-wide data, small count data have
more chance to be weakly fluctuated by noise and to form extremely small within-group vari-
ances than big count data, giving rise to inflating ¢-statistics. For general statistical methods,
the genes or isoforms with small count data derived from small samples would easily be found
to be differentially expressed between conditions.

To address this problem, many methods developed for identifying differentially expressed
genes in microarray data introduce a constant to shrink statistics. For example, in SAM [28],
the two-sample t-test is modified as a d-statistics by adding a minimized coefficient of variation
So to denominator. In the regularized ¢-test method [37], the two-sample ¢-test is modified by
combining gene-specific variance with global average variance. However, since these ap-
proaches shrink the t-statistics for all genes, the power of these approaches is markedly de-
creased. Tan et al [27] developed a conditional shrinking method to address the problem of
inflated ¢-statistics, but this approach cannot be introduced into Beta ¢-test since Beta t-test is
based on differences in frequencies (proportions) of tags between conditions [23].

Baggerly et al [23] employed a weighting and iteration strategy to look for an optimal esti-
mation of parameters and frequency is assumed to follow beta distribution for a tag in a condi-
tion and furthermore developed a new t-test, we called Beta t-test. Weight and optimization
are a useful strategy for excluding artificial or technical noise in count data. Although Baggerly
etal [23] recognized small counts leading to inflation of ¢-tests and tried to avoid the problem
of t-value inflation using alternative variance given in Eq (7A), our practice demonstrated that
Eq (7A) does not substantially release the fudge effect. For this reason, we modified the alterna-
tive variance by utilizing means of total counts over all replicate libraries in a condition for
those isoforms with very small counts. Analytically, it can be seen that the alternative variance
defined in Eq (7B) is larger than that in Eq (7A). Our simulation really showed that the above
small-count effect on testing for differential expressions of isoforms was mostly reduced by our
modified alternative variances.

In order to eliminate effect of small sample size, we introduced a gene-or isoform-specific
variable p into the Baggerly et al.s’ [23]Beta t-test. p is used to measure overlap between two
count sets. If two count sets more overlap and/or have bigger within-group variances, then p
becomes smaller; if two count sets separate and have small noise variation, then p >1. The larg-
er gap between two count sets is, the larger p is. In theory, two count sets that are separated
have higher probability of showing that they come from two different distributions than those
that overlap. Besides, if noise variation within group is large, then ( is small, which makes p be-
come small. Thus, p shrinks t-values of overlapped count sets and inflates f-values of separated
count sets with small noise variation. As seen in Tables A-C in S3 File, compared to the Beta ¢-
test method, our mBeta t-test approach did not obviously decrease its power but significantly
reduce false discovery rate so that it has higher efficiencies. Considering sample size effect, we
set a threshold w for p. That is, t-value is inflated with p > w or shrunken with p < w. As a re-
sult, almost all of t-values with p < w are compressed into a very short interval close to zero but
those with p > w are enlarged and a mixed ¢-value region containing truly positives and false
positives becomes very narrow (Fig 4). Since p-value only depends on t-value given degree of
freedom, p-values with inflating ¢-values are reduced while those with shrinking ¢-values
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become larger, so very few false positives were found by mBeta ¢-test (Fig 4). Threshold w de-
pends on sample size. The larger sample size is and the smaller w is. However, when sample
size is large, w becomes very small, ability of p controlling false discoveries becomes very weak
because the gaps between two datasets are vanished and there is not fudge effect in such data.

ROC analysis is popularly used to evaluate statistical methods [25] [33]. However, the ROC
curves in Fig 1 did not reveal substantial differences among the methods we assessed, particu-
larly in Scenario 4. We thus extended our evaluation of these methods to compare the true and
estimated FDRs in each case. Analysis of the simulation data revealed that the baySeq and
edgeR GLM methods performed well in ideal NB distributions with lower proportions of dif-
ferentially expressed isoforms, smaller condition effects, and smaller numbers of replicate li-
braries. However, performances of these methods are not very well when the sample sizes, the
proportion of differentially expressed isoforms, or the condition effect was increased. We thus
use efficiency to evaluate performances of statistical methods, which is comprised of power
(the ability of finding differentially expressed mRNA transcripts or isoforms) and conserva-
tiveness of FDR estimation (the reliability of findings). Both are equally important—a statistical
method with high power but no conservativeness yields unreliable findings while a very conser-
vative method with low power would miss many truly differentially expressed isoforms. The
two types of methods would have low efficiency. In our compared methods, the Beta t-test and
DESeq methods are two extreme methods, Beta t-test has very high power but its false discov-
eries are highly over its estimated ones, so its findings are not creditable while DESeq has very
low power with so high degree of conservativeness. Recently, authors have recognized that
DESeq has this problem and proposed a new DESeq, called DESeq2 [38]. We compared
DESeq2 to mBeta ¢-test using three repeated simulation NB datasets in two scenarios: (1)
10070 genes, 3 replicate libraries in each of two conditions, 20% of genes with technical noise
and 10% of DE genes and difference effect value = 100U where U is uniform variable and (2)
11341 genes, 3 replicate libraries in each condition, 20% of genes with technical noise, 30% DE
genes, and difference effect value = 300U. The results show that in scenario(1), under estimated
FDR cutoft = 0.05, DESeq2 found, on average, 578 DE genes with SD = 110.2 and true
FDR = 0.019 with SD = 0.0133, mBeta t-test found, on average, 651 DE genes with SD = 67.7
and true FDR = 0.031 with SD = 0.0142; in scenario(2), DESeq2 identified, on average, 2511
DE genes with SD = 329.7 and had true FDR = 0.0202 with SD = 0.0051 while mBeta ¢-test ob-
tained, on average, 2679 DE genes with SD = 191.63 and true FDR = 0.00739 with SD = 0.0015.
Compared to the results in Tables A-C in S3 File, DESeq2 significantly increases power with
still keeping high degree of conservativeness. In addition, DESeq2 was applied to our real gene
transcriptomic data and found 1243 DE genes, of which 1023 DE genes (83%) are the same
with our mBeta t-test findings. This furthermore demonstrates performance of our mBeta
t-test method.

Since differential splicing data are count data of RNA isoform reads and also obtained from
a few replicate libraries, our method can efficiently be applied to the genome-wide detection of
differential splicing events in genes responsive to drug stimulation or to change in cell status.

Finally, while the mBeta ¢-test method described above is more computationally intensive
than many of the previously described approaches, it is significantly less intensive than the bay-
Seq method, which yielded no results in our data. The computational intensity of the mBeta ¢-
test method is a function of the algorithm running literately to look for an optimal estimation
of weight and beta and alpha parameters for each gene or isoform. However, for the described
datasets (~9,500-18,000 features), the algorithm finishes its work in 15 minutes on a stand-
alone server if bootstrap is not utilized to calculate p-values.
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Conclusions

In count data of RNA reads from small samples, the mBeta ¢-test method not only substantially
reduces false discoveries in differential expression identification so that it had high work effi-
ciencies but also has high stability in finding isoforms of being differentially expressed and in
true FDR. Simulated and real data strongly suggest that the mBeta ¢-test method would offer us
a creditable and reliable result of statistical analysis in practice.

Supporting Information

S1 File. This package contains 6 m files for execution of mbeta t-test. Among them mbttest.
m is main program. In addition, the package also contains 6 text files, one csv file and excel file.
The 6 text files are two real data files and two the geneid files, one simulated file, one geneid
file. These files provide examples for how to perform mbeta t-test.

(RAR)

S2 File. Appendix A gives expectation and variance of frequency estimate in beta distribu-
tion. Appendix B gives optimal estimations of o, B, frequency, weight and variance using itera-
tion algorithm. Appendix C gives formulae of ¢ and ( in rho calculation. Appendix D gives p-
value calculation using bootstrap method.

(DOC)

S3 File. Results of performing six statistical methods on simulated data of 11341 genes and
two conditions in simulation Scenarios 1-12.
(DOC)
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