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... and searches for related sequences probably make up the vast bulk of  
bioinformatics activities. 
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The terms homology and similarity are often confused and used incorrectly. 

Homology is a quality. Two genes can either be homologous, or not. There is no such thing 
is *highly homologous or 50% homologous. People who speak like that show that they do not 
fully understand what homologous means. Being homologous is like being “pregnant” in that 
sense: you can only be pregnant, or not – there are no shades in between, like 50% pregnant. 
This is due to what homology describes: a relationship of descent from a common 
ancestor. Either two genes have a common ancester in their evolutionary history, or they 
do not. It doesn’t make sense to say “common ancestry” over only part of their evolution. 
However: genes can be – and frequently are – partially homologous. This means only a 
part of their sequence is related, other parts may be related to different genes. As we will 
discuss later, genes frequently are composed from independently evolving domains. 

Similarity on the other hand is a quantity. It can be measured, quantified, graded, and 
compared. Often, homologous genes have similar sequences. This implies the 
possibility to discover homology by measuring sequence similarity. 

Also consider the term analogous. This is similarty of function or structure or some other 
property, but not through homology – i.e. descendance from a common ancestor – but by 
convergent evolution. It is perhaps remarkable that there is no sequence similarity between  
analogous genes, except for the residues that may be directly involved in a function. (Cf. the 
analogous versions of hydrolases with a catalytic triad.)  
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Common ancestry implies similar structure and function. 
Many obviously homologous genes have very low similarity. In this example, the 
aligned sequences of green- and red- fluorescent protein share only 57 of 239 residues, 
i.e. their pairwise sequence identity is 23.8%. The two organisms share evolutionary 
ancestry and it is a reasonable hypothesis that the two fluorescent proteins have 
evolved from the same ancestral sequence. Strikingly, despite 78% amino acid 
differences in the sequence, the structures of the two proteins are virtually identical 
and their functions (autocatalytic cyclization and oxidation of a conjugated ssytem of 
double bonds from a polypeptide precursor) are very similar.  
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There are two (and only two) ways to arrive at homologous sequences. Again, there 
is often confusion about the terms but you really need to know the precise 
definitions. 
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Neofunctionalization: acquisition of a new function. 
 
Subfunctionalization: expression of the original function as a response to different 
signals, during different times, and/or in different tissues. 
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Three important principles about homology. We have already mentioned the first 
one, and the second one should be obvious as it is an immediate consequence of the 
definition. 
 
Whether homology also must be transitive requires more a bit more consideration. 
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Is it necessarily the case that two proteins are homologous if both of them are 
(perhaps distantly) related to the same third protein? 
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Yes, absolutely. If we draw the evolutionary tree, all three genes are related to the 
same ancestor. However the ordering of their descent (the topology of their 
evolutionary tree) may be different: the question is only where nodes x and y insert 
into the tree relative to each other. 
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Transitivity of homology justifies inferences across very distant evolutionary 
relationships, as long as connections via recognizably homologous genes can be 
defined. This is the basis of advanced alignment algorithms that compare sequences 
against profiles or probabilistic models: in a group of genes are all homologous if 
there is a path of homolgy relationships between any pair – however long hat path 
may be. 
 
But note that this holds only for domains, not necessarily for entire genes with 
their patchwork of (possibly) independently inherited domains. 
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Proteins need not be homologous over their entire length! Each part may have its 
own, partially independent evolutionary history. Databases such as CDART at the 
NCBI make this information available. 
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Homologous proteins always have similar structure.  
Homologous proteins usually have similar function†.  
Homology can't be proven since we can't observe ancestral sequences.  
 
However: sequence similarity can be measured. Homologous proteins frequently have 
similar sequence. 
 
That said, how do we find sequences that are homologous, or, how do we measure 
similarity? 
 
 
† ... including similar localization, modification, processing, expression patterns, 
interactions etc. 
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Inferring homology means measuring similarity. 
Obviously, the fraction of identical residues depends on the alignment and we need 
to consider how the right alignment can be obtained. But even before we can start 
aligning, we need to define a metric for amino acid similarity, because the right 
alignment should give us good similarity, not just a large percentage of identical 
residues. Also, we would like to have a measure that tells us how likely it is that the 
similarity in an alignment is due to evolutionary descent. And there is an additional 
issue: how do we treat sequence insertions resp. deletions in the alignment, 
quantitatively? 
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Am alignment is a map of correspondences. 
 
Alignments do not simply consist in writing one sequence above the other and 
declaring all residues that are in the same column to be related. Proteins evolve to 
have different lengths through changes at their N- and C- terminus, and internal 
insertions and deletions (indels). These length changes need to be defined in order to 
produce an alignment, i.e. the corresponding amino acids are represented by writing 
one sequence above the other and the correspondence we aim for is to have in each 
position that pair of amino acids that descended from the common ancestor. 
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We can consider a structure superposition to be something like the “ground truth” 
for sequence similarity, it captures the context in which each amino acid performs its 
function and experiences its selective constraints. 
 
But the superposition does not necessarily capture the historical process of a 
particular sequence change, moreover, it does not necessarily correspond to any of 
our preconceived heuristic alignments. Part of the problem is that the structural 
accommodation of an indel is not necessarily the site at which the indel arose during 
evolution of the sequence. 
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Obviously, the precise role of a particular amino acid depends on its context in a 
folded protein, however this Venn diagram (originally going back to Willie Taylor) 
provides a good first aproximation to summarize shared sidechain properties and to 
estimate amino acid similarity.  
 

Note that "C" appears twice in this sketch: once as cysteine (CSH) with its free thiol 
function, once as the disulfide bonded cystine (CS-S). These two forms have very 
different properties. 
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Which amino acid(s) we regard as being similar to tyrosine depends on which 
property we are considering. There are many properties that have been measured, all 
of them imply "similarity" of different sets of amino acids, and no obvious strategy 
exists how to define weights to use more than one metric in defining a similarity 
score for an amino acid pair.  
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A scoring matrix can be used to quantify how well a given model is represented in 
two aligned sequences. Here the model says: two amino acids are similar, if it is easy 
to change one codon into the other by single nucleotide substitutions. For very 
closely related sequences, this is actually not a bad metric. And it captures an 
intriguing property of the genetic code: being robust against mutations in the sense 
that the biophysical properties tend to be conserved between similar codons. 
 
Any biophysical property of amino amino acids can be turned into such a scoring 
matrix. However, whether amino acids are likely to be paired in a correct alignment 
of natural sequences is not well described by any single biophysical property, and 
there is no abvious way how to weight their combinations. 
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The Dayhoff model of evolution postulates a quantitative model of the likelihood of 
specific amino acid substitutions as a consequence of evolution, based on the 
empirical observation of variation in related protein sequences. This rejects a 
definition of amino acid similarity from first principles in favor of an empirical 
approach. 
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MDM78PAM250 is a frequently used mutation data matrix. It is the Margret 
Dayhoff Model of 1978, extrapolated to a Percent Accepted Mutation rate of 250. 
But the matrix as used in many alignment tools does not actually give the original 
numbers: it has been modified to score all identities the same (i.e. 1.5, which is IMO 
a big source of alignment problems), and it has been abbreviated to easily map to 
integers – both changes were done to speed up computation which was a big concern 
at the time these matrices were written. 
This approach has been superseded. 
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PAM 250 means: 250 accepted changes in the evolution of 100 amino acids of sequence: 
Percent Accepted Mutations. It expresses the evolutionary distance for which the matrix 
best describes the likelihood of relatedness. But how can the value of Percent Accepted 
Mutations be more than 100? 
Mutations are located randomly in the sequence, therefore some amino acids may be hit 
several times and others never at all. Moreover, once an amino acid is changed, it may still 
revert to its original state through a second mutation. It is easy to see that even with very, 
very many mutations it is virtually impossible to arrive at a sequence that is 100% different 
from the original sequence. 
As the graph inset shows, PAM250 corresponds to about sequence 20% identity.  
Extrapolation to large PAM distances has problems. For example, since Arg and Trp have 
similar codons (_GG), an R→W mutation is quite likely at the very close evolutionary 
distances of the proteins in the Dayhoff dataset. It is also quite likely that evolution will 
favor secondary mutations at that site, to introduce an amino acid that is biophysically more 
compatible, and theR→W becomes unlikely in more distantly related pairs. But in the 
Dayhoff model, where large evolutionary distances are extrapolated by repeatedly 
multiplying the matrix with itself, that discrepancy gets amplified and as a result the 
pairscore of R→W is almost as high as an identity. 
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To address the extrapolation problem, Steve Henikoff compiled matrices directly 
from blocks of ungapped alignments of sequences at given evolutionary distances, 
once a sufficient number of such sequences were available in the databases. These are 
the BLOSUM matrices. 
 
BLOSUM62 is a matrix compiled from sequences of not more than 62% identity. It 
corresponds approximately to a PAM160 matrix and appears to be the most sensitive 
choice to search for just barely detectably related sequence pairs. 
 
 
Henikoff, S.; Henikoff, J.G. (1992). Amino Acid Substitution Matrices from Protein 
Blocks. PNAS 89:10915–10919. 
Eddy, S: (2004), Nat Biotechnol. 8:1035-1036 
See also: http://en.wikipedia.org/wiki/BLOSUM (Good article!) 
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Note that the R→W pairscore of BLOSUM62 is very much more in line with our 
biological intuition. 
 
The matrix has been scaled to integers, for ease of computation. Also, its overall 
expectation  value is negative, so we can't increase alignment scores by randomly 
adding pairs. This is important for local alignments. Finally, as we would expect, the 
score of residue identities depends on the nature of the residue: e.g. C, H, or W 
identities are (and should be) more significant than A or L. 
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The simplest approach to sequence comparison is to display scores or identities in a 
matrix that has one sequence along its rows, one sequence along its columns, thus 
each cell corresponds to a pairwise comparison.  
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Computing such plots is part of assignment 4. 
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... No. The existence of indels makes it intractable to consider all possible 
alignments. 
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Note that the term insertion or deletion refers only to the sequences, not to the 
actual molecular event! 
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Number of particles in the universe: on the order of 1081.  
Alignments for two sequences of length 200: ~3200 = 1095. 
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The premise of context independence makes finding an optimal alignment a solvable 
problem. It is can be shown that alignment problems that are not context-
independent are NP hard, i.e. no algorithm exists that solves such a problem in a 
number of steps that is proportional to some polynomial of the alignment length. 
Rather, the number of steps in fully context-sensitive, gapped alignment must be 
proportional to some number to the power of the alignment length.  
You can visualize this by considering that context sensitive really means: each local 
decision (whether to match two characters or insert an indel) is influenced by the 
state of all characters already in the alignment: all combinations of states are 
therefore distinct and must be considered separately.  This is exactly the procedure 
which we have considered previously as the brute-force approacht o constructing 
alignments – and found to be intractable.  
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Optimal alignment, in the way we have defined the procedure a few slides ago, is simple to 
write as a recursion. However, implementing the approach as a recursion is very(!) inefficient 
since it requires looking up many values over and over again. For example if we are to 
calculate the score for i=9, j=10, we need to consider as one one of the possible extensions 
the cell i=8, j=9 and x=4 i.e. we need to calculate s8-4,9-1-w4-1 =  s4,8-w3. But this is the same 
value for s we previously had to calculate for the adjacent cell column: i=7, j=9, x=3:  
s7-3,9-1-w3-1 =  s4,8-w2, only with a different w. It is not the w-values that are costly to 
calculate however, but the s-values themselves, since we need to recurse all the way to the 
Base Case each time we want to calculate one. So while it is compact to write the alignment 
in the way given above, in practice we would want to store each intermediate result that is 
going to be reused. This technique of storing useful intermediate results is called 
Memoization (not memo r ization) in computer science.  
(cf. http://en.wikipedia.org/wiki/Memoization) 
The actual algorithm therefore uses a compact and intuitive way to model the problem: store 
intermediate values in a matrix where rows and columns correspond to characters in the 
respective sequences. The highest score in the matrix is the optimal score and the cells that 
contribute to that score define the optimal alignment. 
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An alignment can be represented as a path through a matrix that has a row resp. 
column for every letter of the two sequences to be aligned. Any alignment can be 
represented as a path in such a matrix. Only a subset of arrangements correspond to 
legal paths that represent our normal definition of an alignment. 
Note that – especially in genome/genome comparisons – duplications and inversions 
are common and specialized algorithms are available to perform such alignments (e.g. 
Shuffle-LAGAN (http://lagan.stanford.edu/ )). 
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 The first step of the Needleman-Wunsch algorithm for global, optimal sequence 
alignment. This algorithmic strategy is frequently referred to as Dynamic 
Programming.  

 
•  http://en.wikipedia.org/wiki/Dynamic_programming 
•  http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm  
•  http://www.avatar.se/molbioinfo2001/dynprog/dynamic.html – Dynamic 

programming example, courtesy of Per Kraulis. 
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The next scores we need to calculate are the cells in the previous column or row... 
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... unfortunately, we have no quantitative, mechanistic model for these events. 
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Qian and Goldstein (2001)1 have shown that a log linear plot of gap probabilities in 
aligned sequences can be modeled by a sum of four exponential functions. This can 
be interpreted to mean that several molecular mechanisms could exist for the 
generation of indels, each with a distinct and characteristic probability of occurrence.  
However, logarithmic gap penalties do not improve alignments (Cartwright, 2006)2. 
Recent developments focus on the inclusion of additional knowledge about the 
sequences, such as secondary-structure specific gap penalties, or using sequence 
profiles or multiple alignments, rather than aiming to further improve the gap 
parameters. The bottom line is: we have no good model for indels, but we have no 
significantly better model than the simple affine model. 
 
1 http://www.ncbi.nlm.nih.gov/pubmed/11536366 
2 http://www.ncbi.nlm.nih.gov/pubmed/17147805 
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In the example above, the ankyrin domain repeats of the yeast transcription factor 
Mbp1 are shown as a red box in this graphic of domains in sequence families, 
compiled in the CDART database1. This domain is found in many other proteins, 
but some of them do not share the other sequence elements found in Mbp1 - they are 
only partially related. Attempting a global sequence alignment with such sequences 
would attempt to align sequences that are actually not homologous, leading to 
inappropriately low scores and the danger of spurios results.   
Temple Smith and Michael Waterman2 have slightly modified the Needleman-
Wunsch algorithm, 11 years after its publication, to find the highest scoring local 
alignment: this is the highest match in the matrix, tracked back to the point where 
the pathscore drops below zero. The rest of the algorithm works in exactly the same 
way. There is only one detail that needs to be considered: the substitution matrix 
must yield a negative expectation value for random alignments. If this were not the 
case, random pairs could extend the locally high-scoring alignment unreasonably. 
 
1 http://www.ncbi.nlm.nih.gov/pubmed/12368255 
2 http://en.wikipedia.org/wiki/Smith_Waterman_algorithm 
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In this example, Smith-Waterman local sequence alignment detects only the high-
scoring similarity between Mbp1 and Swi4s APSES domains. The lower scoring, 
more highly diverged ankyrin repeats are missed by the algorithm. The Needleman-
Wunsch alignment finds both sets of sequences, albeit there are segments in between 
that don't align well at all.  
In this case, one could do a local alignment, remove the matching segments from the 
input sequences and then redo the alignment to see if any other significantly similar 
segments are found.  
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 Of course the algorithms will optimally align anything you feed them, but for anything but homologous 
sequence the alignment will be meaningless. Aligning non-homologous sequences is a nice example 
of cargo-cult bioinformatics.  
 Therefore: if you already know that your proteins are multi-domain, separate out the domains before 
aligning. If you don't know, critically look at the results, generate a hypothesis about the domain 
structure and rerun your alignment on the domains separately. The exception, of course: is if you know 
(or believe) your two proteins comprise homologous domains in the same order.  
 Amino acid sequences are much more highly conserved then genomic sequence and even if you have 
nucleotide sequences to start from, you should always translate them before aligning. In general, many 
more matches are required to make nucleotide sequence matches significant, since the alphabet is much 
smaller. Also, there is no good notion of "similarity" or "conservative mutation" at the nucleotide level1. 
 The only reasons to align nucleotides are: 

•  if you are actually interested in the number and type of nucleotide exchanges, such as in gene 
assembly and EST clustering, studies of SNPs, in comparative genomics, phylogenetic studies of closely 
related genes, or defining primer binding sites; 

•  if you are aligning untranslated sequences; in particular if it is the nucleotide sequence itself that is 
conserved, such as in DNA binding sites or splice sites; or if you are studying  RNA genes, such as 
tRNA or rRNA.  
 A corollary is that you should not try to align sequences in highly gapped regions. These residues have 
evolved in a non-comparable context, they cannot have been conserved by evolution for that reason and 
applying our scoring matrices cannot compare such residues in a meaningful way. 

 
1 However, transitions (conserving pyrimidines or purines) are more frequent than transversions. See http://

en.wikipedia.org/wiki/Models_of_DNA_evolution for how this is modelled. 
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Note that reporting %-identity is an objective metric, but it still depends on the 
exact alignment that has been produced and it does not capture the quality of gaps. 
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Empirical thresholds to conclude that two sequences are homologous 
 Identities of 20 to 25% are also called the ''twilight zone'' - in which 
homology is likely but can't be confidently inferred from sequence 
similarity alone. 
 These thresholds are based on sequence similarity after optimal 
alignment. Additional supporting evidence for homology can be 
contributed from: 

•  simlar length; 
•  similar functional sequence patterns (e.g. cys/his clusters); 
•  similar number of transmembrane helices; 
•  similar conservation patterns or conserved motifs; 
•  similar amino acid frequencies or bias (eg. polyglutamine, polyproline); 
•  similar patterns of disordered sequence; 
•  similar structure; 
•  similar function; 
•  similar genomic context; 
•  similar interactors; 
•  similar subcellular localization; 
•  [...] 
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Tachylectin: cherry-blossom symmetry in a lectin from the Japanese horseshoe 
crab. 
The dotplot that compares the sequence with itself shows the self-identity matches 
on the diagonal and five domains that are all mutually similar (but not identical) to 
each other, seen as partial similarities on the off-diagonals. If you think of the path 
matrix as resembling a dotplot, the repeat alignments we need to analyze correspond 
to such off-diagonal stretches of high similarity. 
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The RADAR server1 at the EBI analyzes sequences for internal repeats. 
 
 
1 http://www.ebi.ac.uk/Radar/  
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... and the O(n2) resource requirement means the algorithm is too slow for searches 
on a database scale i.e. in very large search spaces. 
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