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homology

Almost all of bioinformatics is in
some way derived from inference
based on homology.

... and searches for related sequences probably make up the vast bulk of
bioinformatics activities.




homology

Two genes are homologous if they have
diverged from a common ancestor.

The terms homology and similarity are often confused and used incorrectly.

Homology is a quality. Two genes can either be homologous, or not. There is no such thing
is *highly homologous or 50% homologous. People who speak like that show that they do not
fully understand what homologous means. Being homologous is like being “pregnant” in that
sense: you can only be pregnant, or not — there are no shades in between, like 50% pregnant.
This is due to what homology describes: a relationship of descent from a common
ancestor. Either two genes have a common ancester in their evolutionary history, or they
do not. It doesn’t make sense to say “common ancestry” over only part of their evolution.
However: genes can be — and frequently are — partially homologous. This means only a
part of their sequence is related, other parts may be related to different genes. As we will
discuss later, genes frequently are composed from independently evolving domains.

Similarity on the other hand is a quantity. It can be measured, quantified, graded, and
compared. Often, homologous genes have similar sequences. This implies the
possibility to discover homology by measuring sequence similarity.

Also consider the term analogous. This is similarty of function or structure or some other
property, but not through homology — i.e. descendance from a common ancestor — but by
convergent evolution. It is perhaps remarkable that there is no sequence similarity between
analogous genes, except for the residues that may be directly involved in a function. (Cf. the
analogous versions of hydrolases with a catalytic triad.)




homology

Homologous Proteins:

Conserved structure and function GFP  MGKGEELFTGVVPILVELDGD
RFP MRSSKNVIKEFMRFKVRMECGTV

GFP SG
RFP EG

CDATYCKLTLEFICTT.CKLS
CRPYEGHNIVELKVIKGEGPLEFFAW

GFP PTLVTTESYCGVQCFSRYPDHMERHDEFES
RFP DILSPQFQYGSKVYVKHFADI. . PDYKEL

GFP AMPECYVQERTIFFKDDENYKTRAEVKFE
RFP SFPEGFEWERVMNIEDGEVVTVTQDSSLO

GFP GDTLVNRIELKCIDEFKEDCENILGHE . LEY
RFP DGCFIYKVKFICVNEPSDOFPVMQEXTMGW

GFP NYNSHNVYIMADKQNNGIKVNFXIRHNIE
. RFP EASTERLYPRDGVLEGEIHKALKELK. ...

GFP DESVQLADHYQONTPIGDGFVLLFDNHYL
RFP DGGHYILVEFKSIY. .MAKKFUQLFGYYYV

GFP STOSALSKDPNEKRDHMVLLEFVTAAGIT
RFP DSKELDITSH. . ..NEDYTIVEQYERTEGR

GFP HGMDELY
RFP + « « HHLF

Green Fluorescent Protein Red Fluorescent Protein 853 identities / 239 aligned positions = 24 %
{Aequorea victoria) ( Discosoma striata)

Common ancestry implies similar structure and function.

Many obviously homologous genes have very low similarity. In this example, the
aligned sequences of green- and red- fluorescent protein share only 57 of 239 residues,
i.e. their pairwise sequence identity is 23.8%. The two organisms share evolutionary
ancestry and it is a reasonable hypothesis that the two fluorescent proteins have
evolved from the same ancestral sequence. Strikingly, despite 78% amino acid
differences in the sequence, the structures of the two proteins are virtually identical
and their functions (autocatalytic cyclization and oxidation of a conjugated ssytem of
double bonds from a polypeptide precursor) are very similar.




evolution

Orthologues:
Genes that have diverged through speciation.

Changes on the evolutionary trajectory occur

under selective pressure.

Function ususally is conserved.

There are two (and only two) ways to arrive at homologous sequences. Again, there
is often confusion about the terms but you really need to know the precise
definitions.




evolution

Paralogues:

Genes that have diverged through duplication.

Changes on the evolutionary trajectory occur

under reduced or absent selective pressure.

Consequences:
Function ususally is not conserved:
— Neofunctionalization

— Subfunctionalization

Neofunctionalization: acquisition of a new function.

Subfunctionalization: expression of the original function as a response to different
signals, during different times, and/or in different tissues.




principles

Homology is not a quantity

but a quality.

Homology is commutative.
AeB—=BoeA

Homology is transitive.
AeB,BaeC .. AeC

Three important principles about homology. We have already mentioned the first
one, and the second one should be obvious as it is an immediate consequence of the
definition.

Whether homology also must be transitive requires more a bit more consideration.




transitivity of homology

AeoB BeC A?7C

Is it necessarily the case that two proteins are homologous if both of them are
(perhaps distantly) related to the same third protein?
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Yes, absolutely. If we draw the evolutionary tree, all three genes are related to the
same ancestor. However the ordering of their descent (the topology of their
evolutionary tree) may be different: the question is only where nodes z and y insert

into the tree relative to each other.
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transitivity of homology

®

Transitivity of homology justifies inferences across very distant evolutionary
relationships, as long as connections via recognizably homologous genes can be
defined. This is the basis of advanced alignment algorithms that compare sequences
against profiles or probabilistic models: in a group of genes are all homologous if
there is a path of homolgy relationships between any pair — however long hat path
may be.

But note that this holds only for domains, not necessarily for entire genes with
their patchwork of (possibly) independently inherited domains.
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partial homology

CDART: Conserved Domain Architecture Retrieval Tool

Structure
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Proteins need not be homologous over their entire length! Each part may have its
own, partially independent evolutionary history. Databases such as CDART at the
NCBI make this information available.
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inferences

Homologous proteins always have similar structure.

Homologous proteins usually have similar functionf.

Homology can't be proven since we can't observe ancestral sequences, However: ...

... sequence similarity can be measured.

Homologous proteins frequently have similar sequence.

... including similar localization, modification, processing, expression patterns, interactions et

Homologous proteins always have similar structure.
Homologous proteins usually have similar functionf.

Homology can't be proven since we can't observe ancestral sequences.

However: sequence similarity can be measured. Homologous proteins frequently have
similar sequence.

That said, how do we find sequences that are homologous, or, how do we measure
similarity?

f ... including similar localization, modification, processing, expression patterns,
interactions etc.
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similarity

Homologous Proteins:
Conserved structure and function

GFP
RFP

GFP
RrFp
GFP
RFP

GFP
RFP

GFP
RFP

GFP
RFF

GFP
RFP

GFP
REP

GFP
RFP

(Aequorea victoria, 112MA) ( Discosoma stiriata, 10GX)

MGKGEELFTGVVPILVELDEDVHGHKF SV
MRSSKNVIKEFMRFKVRMEGTVNGHEFEL

SCEGEGDATYGKLYLEFICTT . GKLEVER
EGEGEGRPYEGHNTVELKVTKGEPLPFAW

PTLVTTFSYGVQCFSRYFDHMERHOFFES
DILSPQFQYESKVYVKHFADT . . POYKETL

AMPEGYVQERTIFFKDDGNYKTRAEVEFE
SFFEOFKWERVMNFEDGEVVTVTODSSTO

GDTLVNRIELKGIDFKEDONILGHE . LEY
DGCFIYKVEF ICVNE PEDOPVMOKETMGW

NYNSHNVY IMADKQENGIKVNFE IRENIE
EASTERLYPRDGVLNGETHKALALK. ...

DOSVOLADHYQONTPIGDGFVLLFDNHYL
GGHYLVEFKSIY. .MAKKFVQLEGYYYV

STOSALSKDPNEKRDEMVLLEFVTRAGIT
DSKLDITSH. ...NEDYTIVEQYERTEGR

HGMDELY
+ + « HHLF

Measuring similarity requires an
Alignment. Calculating an alignment
means accounting for amino acid
Green Fluorescent Protein Red Fluerescent Protein Similarity; insertions and deletions.

Inferring homology means measuring similarity.

Obviously, the fraction of identical residues depends on the alignment and we need
to consider how the right alignment can be obtained. But even before we can start
aligning, we need to define a metric for amino acid similarity, because the right
alignment should give us good similarity, not just a large percentage of identical
residues. Also, we would like to have a measure that tells us how likely it is that the
similarity in an alignment is due to evolutionary descent. And there is an additional

issue: how do we treat sequence insertions resp. deletions in the alignment,

quantitatively?

15



aligmment

What is an alignment?

What relationship between two amino acids do we want

to capture when we write them above each other?
Example: aligning a segment of GFP and RFP with unequal length.

GFP DGSVQL DHYQQNTPIGD(#PVLLP
RFP DGGHYLVEFKSI YMAKTPVQLP

|

Uncertain alisnment

Certain alignment

Am alignment is a map of correspondences.

Alignments do not simply consist in writing one sequence above the other and
declaring all residues that are in the same column to be related. Proteins evolve to
have different lengths through changes at their N- and C- terminus, and internal
insertions and deletions (indels). These length changes need to be defined in order to
produce an alignment, i.e. the corresponding amino acids are represented by writing
one sequence above the other and the correspondence we aim for is to have in each
position that pair of amino acids that descended from the common ancestor.
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alignment

In order for an alignment to make sense, we should strive not to
pair-up amino acids that can not be compared on equal terms
because they evolve in a very different structural context. But
insertions/deletions always change the context over an

unpredictable stretch of residues.

Strategies to resolve indels:

GFP DGSVQLADHYQONTPIGDGPVLLP Minimize

RFP DGGHYLVEFKSIY. .MAKKPVQLP gap length

GFP DGSVQLADH....YQONTPIGDGPVLLP Don't align
RFP DGGHYLVEFKSIY:. v coe® MAKKPVQLP non-equivalent

residues

GFP DGSVQLADH. . .YQONTPIGD.GPVLLP Maximize
RFP DGGHYLVEFKSIY..... MAKK.PVQLP similarity




alignment

Strategies:

GFP DGSVQLADHYQONTPIGDGPVLLP
RFP DGGHYLVEFKSIY..MAKKPVQLP

GFP DGSVQLADH. .. .YOONTPIGDGPVLLE
RFP DGGHYLVEFKSIY. c s s o MAKKPVQLE

GFP DGSVQLADH. . . YQONTPIGD.GPVLLE
RFP DGGHYLVEFKSIY..... MAKK.PVQLE

Superposition (Reality):

GFP HYQONTPIGDGP. .VLLP
RFP FKSIYMAK. .. .KPVQLP

We can consider a structure superposition to be something like the “ground truth”
for sequence similarity, it captures the context in which each amino acid performs its
function and experiences its selective constraints.

But the superposition does not necessarily capture the historical process of a
particular sequence change, moreover, it does not necessarily correspond to any of
our preconceived heuristic alignments. Part of the problem is that the structural
accommodation of an indel is not necessarily the site at which the indel arose during
evolution of the sequence.
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similarity

Biophysical properties provide a first-order approach to define amino acid
similarity.

tiny

aliphatic

hydrophobic Prm— Charged

aromatic pOSitive

Obviously, the precise role of a particular amino acid depends on its context in a
folded protein, however this Venn diagram (originally going back to Willie Taylor)
provides a good first aproximation to summarize shared sidechain properties and to

estimate amino acid similarity.

Note that "C" appears twice in this sketch: once as cysteine (Cgyy) with its free thiol
function, once as the disulfide bonded cystine (Cgg). These two forms have very

different properties.
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similarity

H-bond Donor
(CHKNQRSTWY) Nucleophile
. (CDESTY)
Aromatic .
(FWH) - . «us., H-Bond Acceptor
(DEHNQSTY)

3 | Phospho-Acceptor

/ (sTY)
/
Hydrophobic /
(FAMILYVW)
= O Bulky
(FILQRYW)

2° of side chain
rotational freedom

(CDFHSW)

Which amino acid(s) we regard as being similar to tyrosine depends on which
property we are considering. There are many properties that have been measured, all
of them imply "similarity" of different sets of amino acids, and no obvious strategy
exists how to define weights to use more than one metric in defining a similarity
score for an amino acid pair.




similarity - context

The problem:

Amino acids can have multiple functions.
Which function is important, is determined by
context.

What is more, context may influence the function.

Quantifying similarity in sequences
implies a measure based only on pairs of

amino acids, independent of the context!

Example:

pK of Side Chain: charge
is determined by
environment.

E.g. a-helix dipole can
easily shift pK by £ 2
PH units ...

PK AA
3.9 D ASP
4.4 E GLU
6.5 H HIS
9.2 C CYS
10.1 Y TYR
10.5 K LYS
12.0 R ARG

(TJ Creighton, Proteins.
2.ed. Freeman, NY 1993)
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scoring matrix

Models of amino acid similarity can be quantified
in a scoring matrix
Scoring matrix:

define similarity of each amino acid with each
possible aligned amino acid ...

(also: "similarity matrix", "mutation matrix", "substitution matrix" ...

J
_— Q.EIY g A c D E F G
HSSDYA A 1.5 0.3 0.3 0.3 -0.5 0.7
J ¢c 0.3 1.5 -0.5 -0.6 -0.1 0.2
*p 0.3 -0.5 1.5 BEEON -1.0 0.7

E 0.3 0.6 1.0 PIUSIL9.7  D.8

F -0.5 -0.1 -1.0 -0.7 1.5 -0.6

G 0.7 0.2 0.7 0.5 -0.6 1.5

)

- score: 1.0
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genetic code matrix
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3 nucleotide exchanges score 0.0

W N NN O KR R O O R R
© O © o O 0O o O © 0o o o
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Minimum exchange distance:
R: CGA CGC CGG CGT AGA AGG
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H N O B e

-
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The Genetic Code Matrix measures the likelihood that one
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codon could have been produced by nucleotide 3.

© O 0 O O 0O 0O 0O O 0O 0O 0O 0O 0 O 0O 0 © O O ©o o

N K s < A ®n =x O v o= 2 R

substitution from another.

(Incidentally, similar codons also code for similar amino acids!)

A scoring matrix can be used to quantify how well a given model is represented in
two aligned sequences. Here the model says: two amino acids are similar, if it is easy
to change one codon into the other by single nucleotide substitutions. For very
closely related sequences, this is actually not a bad metric. And it captures an
intriguing property of the genetic code: being robust against mutations in the sense
that the biophysical properties tend to be conserved between similar codons.

Any biophysical property of amino amino acids can be turned into such a scoring
matrix. However, whether amino acids are likely to be paired in a correct alignment
of natural sequences is not well described by any single biophysical property, and
there is no abvious way how to weight their combinations.
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similarity: Dayhott model

Similarity can be

defined as the
M. Dayhoff % e
A quantitative model of emplrlcal prObablllty
evolution: .

that two amino
acids can substitute
for each other
during evolution!

This makes speculations
about about amino acid
similarity based on first
principles unnecessary.

The Dayhoff model of evolution postulates a quantitative model of the likelihood of
specific amino acid substitutions as a consequence of evolution, based on the
empirical observation of variation in related protein sequences. This rejects a
definition of amino acid similarity from first principles in favor of an empirical
approach.
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Dayhoft Mutation Data Matrix

A B
1.5 0.2

1.1 -

MDM7 8PAM250

( Gribskov & Burgess modification )
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| A scoring matrix is a tool to quantify how well a certain
model is represented in two aligned sequences. The Dayhoff

Matrix measures the likelihood that one amino acid could
have been selected by evolution as an acceptable
change in closely related sequences.
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MDMT78PAM250 is a frequently used mutation data matrix. It is the Margret

Dayhoftf Model of 1978, extrapolated to a Percent Accepted Mutation rate of 250.

But the matrix as used in many alignment tools does not actually give the original
numbers: it has been modified to score all identities the same (i.e. 1.5, which is IMO
a big source of alignment problems), and it has been abbreviated to easily map to
integers — both changes were done to speed up computation which was a big concern

at the time these matrices were written.

This approach has been superseded.
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PAM and extrapolation
A B [+ D E F G H I K L M N P [+] R 5 T v W b 4 z
1.5 0.2 0.3 0.3 0.3 -0.5 0.7 -0.1 0.0 0.0 -0.1 0.0 0.2 0.5 0.2 -0.3 0.4 0.4 0.2 -0.8 -0.3 0.2 A
1.1 -0:4 1.1 0.7 =0.7 0.6 0.4 -0.2 0.4 =0.5 0.3 1.1 0.1 0.5 0.1 0.3 0.2 -0.2 -0i7 -0.3 0.6 B
1.5 -0.5 -0.6 -0.1 0.2 -0.1 0.2 -0.6 -0.8 -0.6 -0.3 0.1 -0.6 -0.3 0.7 0.2 0.2 -1,2 1.0 -0.6 €
1.5 1.0 -1.0 0.7 0.4 -0.2 0.3 -0.5 -0.4 0.7 0.1 0.7 0.0 0.2 0.2 -0.2 -1,1 -0.5 0.9 D
1.5 -0.7 0.5 0.4 -0.2 0.3 -0.3 -0.2 0.5 0.1 0.7 0.0 0.2 0.2 -0.2 -1.1 -0.5 1.1 E
1.5 -0.6 -0.1 0.7 -0.7 1.2 0.5 -0.5 -0.7 -0.8 0.5 -0.3 -0.3 0.2 1.3 1.4 -0.7 F
MDM7 8PAM250 1.5 -0.2 -0.3 -0.1 -0.5 -0.3 0.4 0.3 0.2 -0.3 0.6 0.4 0.2 -1.0 -0.7 0.3 G
(Gribskev & Burgess modification) 1.5 -0.3 0.1 -0.2 -0.3 0.5 0.2 0.7 0.5 -0.2 -0.1 -0.3 -0.1 0.3 0.5 H
1.5 -0.2 0.8 0.6 -0.3 -0.2 -0.3 -0.3 -0.1 0.2 1.1 -0.5 0.1 -0.2 I
e — 1.5 -0.3 0.2 0.4 0.1 0.4 0.8 0.2 0.2 -0.2 0.l -0.6 0.4 K
1.5 1.3 =0.4 =0.3 =0.1 -0.4 -0.4 -0.1 0.8 0.5 0.3 -0.2 L
20| 1.5 -0.3 -0.2 0.0 0.2 -0.3 0.0 0.6 -0.3 -0.1 -0.1 M
8 1.5 0.0 0.4 0.1 0.3 0.2 -0.3 -0.3 -0.1 0.4 N
& aot 1.5 0.3 0.3 0.4 0.3 0.1 -0.8 -0.8 0.2 P
% | 1.5 0.4 -0.1 -0.1 -0.2 =0.5.-0.6 1.1 0O
T 60 1.5 0.1 -0.1 -0.3 1.4 -0.6 0.2 R
I 1.5 0.3 -0.1 0.3 -0.4 0.0 §
2 1.5 0.2 -0.6 -0.3 0.1 T
! 1.5 -0.8 -0.1 -0.2 V
100 -
o 50 100 150 200 250 300 350 400 1.5 1.1 -0.8 W
PAM PAM: Percent Accepted Mutation 1.5 0.6 ¥
1. %
Extrapolation errors arise from genetic code proximity (ree«-ccc,acc)!

PAM 250 means: 250 accepted changes in the evolution of 100 amino acids of sequence:
Percent Accepted Mutations. It expresses the evolutionary distance for which the matrix
best describes the likelihood of relatedness. But how can the value of Percent Accepted
Mutations be more than 1007

Mutations are located randomly in the sequence, therefore some amino acids may be hit
several times and others never at all. Moreover, once an amino acid is changed, it may still
revert to its original state through a second mutation. It is easy to see that even with very,
very many mutations it is virtually impossible to arrive at a sequence that is 100% different
from the original sequence.

As the graph inset shows, PAM250 corresponds to about sequence 20% identity.

Extrapolation to large PAM distances has problems. For example, since Arg and Trp have
similar codons (_GG), an R—W mutation is quite likely at the very close evolutionary
distances of the proteins in the Dayhoff dataset. It is also quite likely that evolution will
favor secondary mutations at that site, to introduce an amino acid that is biophysically more
compatible, and theR—W becomes unlikely in more distantly related pairs. But in the
Dayhoff model, where large evolutionary distances are extrapolated by repeatedly
multiplying the matrix with itself, that discrepancy gets amplified and as a result the
pairscore of R—W is almost as high as an identity.

28



BLOSUM

BLOSUM — An Empirical Scoring Matrix

Compiled from large source database.

Alignment from ungapped blocks of sequence.
(Important, since amino acids in regions containing gaps are in different environments i.e. in

different context, thus alignment becomes irrelevant for measuring similarity.)

Matrix at different evolutionary distance compiled directly from more

or less distantly related sequences - no extrapolation problem.

Blosum62 is the matrix of (first) choice

for most applications.

(Default gap insertion: -10, default gap extension: -0.5)

To address the extrapolation problem, Steve Henikoff compiled matrices directly
from blocks of ungapped alignments of sequences at given evolutionary distances,
once a sufficient number of such sequences were available in the databases. These are
the BLOSUM matrices.

BLOSUMG62 is a matrix compiled from sequences of not more than 62% identity. It
corresponds approximately to a PAM160 matrix and appears to be the most sensitive
choice to search for just barely detectably related sequence pairs.

Henikoff, S.; Henikoff, J.G. (1992). Amino Acid Substitution Matrices from Protein
Blocks. PNAS 89:10915-10919.

Eddy, S: (2004), Nat Biotechnol. 8:1035-1036
See also: http://en.wikipedia.org/wiki/BLOSUM (Good article!)
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BLOSUM

A R N DC®Q E GHTIULI KMTFUZPS T WY V

BLOSUM 62 is a matrix Al4-1-2-2 0-1-1 0-2-1-1-1-1-2-1 1 0-3-2 0
R 5 0 -2-3 1 0-2 0-3-2 2-1-3-2-1-1-3-2-3

calculated from blocks of , i s A
aligned sequences with no D 6-3 0 2-1-1-3-4-1-3-3-1 0-1-4-3-3
. c 9 -3 -4-3-3-1-1-3-1-2-3-1-1-2-2-1

less than 62% divergence. y 8 38 Bl 2 1 03 -1 01 -2 -1 -2
E $-2 0-3-3 1-2-3-1 0--1-3=-22-2

G 6 -2 -4 -4 -2 -3 -3-2 0-2-2-3-3

H 8 -3-3-1-2-1-2-1-2-2 2-3

A scoring matrix is a tool to ¥ f 2-2 1 0-3-2-1-3-1 3
. ) . L 4 -2 2 0-3-2-1-2-11
quantify how well a certain model = 5131 0132 2
is represented in two aligned " 5 0-2-1-1-1-1 1
sequences. The BLOSUM Matrix ¥ 6-4-2-2 1 3-1
: ; P 7 -1 -1 -4 -3 -2

measures the likelihood that one " 13 s
amino acid could replace T 5-2-2 0
another in ungapped regions " 23
. Y 7 -1

of two distantly related v .

sequences.

Henikolt S & Henikoll JG (1992) Amino acid substitution matrices [rom protein blocks, Proc, Natl. Acad. Sci. USA 89:10915-10919

Note that the R—W pairscore of BLOSUMG62 is very much more in line with our
biological intuition.

The matrix has been scaled to integers, for ease of computation. Also, its overall
expectation value is negative, so we can't increase alignment scores by randomly
adding pairs. This is important for local alignments. Finally, as we would expect, the
score of residue identities depends on the nature of the residue: e.g. C, H, or W
identities are (and should be) more significant than A or L.
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Dotplot

Dotplot: simplest approach Good for quick, graphical

to sequence comparison: overview:
whatsinaname —Inter- and intra- sequence

o e comparison

2 ’ - 8 Identifies alternative alignments

" " — Identifies internal repeats and

s . domains

1 . —Identifies low-complexity regions

T 5 _ ¢ —Identifies palindromes

: ) . ) . ) —Identifies frameshifts and longer

a . . . insertions

m .

e .

The simplest approach to sequence comparison is to display scores or identities in a
matrix that has one sequence along its rows, one sequence along its columns, thus
each cell corresponds to a pairwise comparison.




| Mot ;niu-‘ -"-..||'|||||-

1 10 20 30 40 50 60 70 80 90 110

Dotplot coded in R

(Comparison of the N-

40

termini of the homologous
SACCE and USTMA
Mbpl sequences)

YFO
180 160 140 120 10C B0 B0

200

1 10 20 30 40 50 60 70 80 90 110

SACCE

130

130

150

150

170

190

20

40

180 160 140 120 100 B0

200

Computing such plots is part of assignment 4.
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proving homology

How do we prove homology ?

If the alignment of two sequences scores so highly under a
particular model of evolution from a common ancestor that a
random chance similarity is sufficiently improbable, we may
assume the sequences to be homologous.

How do we measure compatibility with a model of
evolution ?

Use a Scoring Matrix that quantifies relatedness under a
model of evolutionary relatedness. Then score the correct
alignment.

What is the "correct" alignment ?

That is an alignment that pairs up those and only those
residues that are the result of divergent evolution from a
common ancestor.
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inferring homology

How do we generate the "correct" alignment 7

We can't. We can never guarantee that a particular alignment is correct! There
is no possibility to know the ancestral sequence and the evolutionary sequence.
Even the sequencing of ancient DNA does not guarantee we are looking at the
actual progenitors.

What can we do 7
We can produce an optimal alignment. If the optimal alignment does
not support homology, then the correct alignment will not support

homology either. But: we cannot guarantee that this is the correct alignment.

(In fact we can define scenarios in which it will not be, since a one-to-one
relationship between residues may not be meaningful in distantly related
sequences. )
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inferring homology

In the absence of observation, the correct alignment remains unknown.

However: ...

If we produce the best possible alignment
and we cannot infer homology from that, the
"correct " alignment would not convince us
either.

... and the best possible alignment can be constructed.
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optimal alignment

How can the best possible alignment

be constructed 7

Can one generate all alignments, score them, and chose the best 7

... No. The existence of indels makes it intractable to consider all possible
alignments.
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indels

Related sequences often have different lengths. Ends can be
lengthened and shortened, and internally, seements ranging from

single residues to entire domains can have

been inserted. |
1E17 PYFKD-KGDSNSSAGWKNSIRHNL
1KQ8 PFFRGSY====- TG-WRNSVRHNL
L |

In general, an insertion from the
point of view of one sequence is the

same as a deletion from the point of

view of the other sequence, thus we

often use the term "indel".

Note that the term insertion or deletion refers only to the sequences, not to the
actual molecular event!
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indels

Match

Ille‘I‘thll
clctlon
1E17 PYFK DSNSSAGWKNSIRHNL
1KQ08 PFFR ——==TG-WRNSVRHNL

Since every position of the alignment can
represent one of three states, the number
of different alignments is on the order

of (3'reh)—oreater than the number of
particles in the universe for the length of
typical protein sequences.

This is an intractable problem.

Number of particles in the universe: on the order of 103!

Alignments for two sequences of length 200: ~320 = 10%.
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indels

1E17
1KQ8

But: if we assume that
the global score is simply
a sum of pair-scores, we
can devise an effective
divide-and-conquer

approach ...
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optimal alignment

Premise:
The total alignment score is the sum of all pair-scores

for characters, minus a penalty for each indel.

Pair scores depend only on the pair

of characters under consideration.

Since we determine a pair-score "locally" (without reference to its
neighbourhood, or other context), simply by looking it up in a scoring matriz,
we can subdivide the big problem of global alignment into many little

problems that are easier to solve.

The premise of context independence makes finding an optimal alignment a solvable
problem. It is can be shown that alignment problems that are not context-
independent are NP hard, i.e. no algorithm exists that solves such a problem in a
number of steps that is proportional to some polynomial of the alignment length.
Rather, the number of steps in fully context-sensitive, gapped alignment must be
proportional to some number to the power of the alignment length.

You can visualize this by considering that context sensitive really means: each local
decision (whether to match two characters or insert an indel) is influenced by the
state of all characters already in the alignment: all combinations of states are
therefore distinct and must be considered separately. This is exactly the procedure
which we have considered previously as the brute-force approacht o constructing
alignments — and found to be intractable.
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optimal alignment

The highest possible score of an alignment is the (highest
possible score of an alignment that is one residue
shorter), extended in the best possible way by one residue ...

... the highest possible score of an alignment that is one residue shorter is the

(highest possible score of an alignment that is two residues shorter),

extended in the best possible way by one residue ...

... the highest possible score of an alignment that contains
only a single pair of residues can be looked up in the scoring
matriz.
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optimal alignment

Recursive definition of alignment score in optimal alignment:

‘ Global score

-
Si_1,j_1 or

r

/ Pair score

—_ SI + Mmax '< max Si-x,j-1 = W(X'1)

2=x<i

S,

R

j
or

Lmax S; ., - w(y-1)
2=y<j \

Gap penalty

function

Optimal alignment, in the way we have defined the procedure a few slides ago, is simple to
write as a recursion. However, implementing the approach as a recursion is very(!) inefficient
since it requires looking up many values over and over again. For example if we are to
calculate the score for i=9, j=10, we need to consider as one one of the possible extensions
the cell i=8, j=9 and x=4 i.e. we need to calculate sg 44 ,-w,; = s,¢-W;. But this is the same
value for s we previously had to calculate for the adjacent cell column: i=7, j=9, x=3:
S7.50.1-Ws.1 = S, Wy, only with a different w. It is not the w-values that are costly to
calculate however, but the s-values themselves, since we need to recurse all the way to the
Base Case each time we want to calculate one. So while it is compact to write the alignment
in the way given above, in practice we would want to store each intermediate result that is
going to be reused. This technique of storing useful intermediate results is called
Memoization (not memo r ization) in computer science.

(cf. http://en.wikipedia.org/wiki/Memoization)

The actual algorithm therefore uses a compact and intuitive way to model the problem: store
intermediate values in a matrix where rows and columns correspond to characters in the
respective sequences. The highest score in the matrix is the optimal score and the cells that
contribute to that score define the optimal alignment.
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path matrix
ABCD
BCD AB-CD o AB--CD
L o e 1 1 i L
BCD - BDCD
possible
ABCD ABC=---=-1D
|
E
A-B C D O - I r ---EFGD
A B E . -==ABCD
|
B D possible e
C e ABCD
E
D D o =RR f\_ =
c
F BE-=-CC -F
not allowed (duplication)
Any alignment can be Stretches of ungapped aligned
represented as a path characters are diagonally i
' ) 2 ARE D
through a matrix that connected. Indels skip over rows B | |
. . . D ACBD
connects each intersection or columns. Paths that terminate . T :
not allowed (inversion)
of row and column for two away from the first or last cell
aligned characters. represent end-gaps.

An alignment can be represented as a path through a matrix that has a row resp.
column for every letter of the two sequences to be aligned. Any alignment can be
represented as a path in such a matrix. Only a subset of arrangements correspond to
legal paths that represent our normal definition of an alignment.

Note that — especially in genome/genome comparisons — duplications and inversions

are common and specialized algorithms are available to perform such alignments (e.g.
Shuffle-LAGAN (http://lagan.stanford.edu/ )).
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algorithm

Needleman & Wunsch (1970):
the optimal alignment is given by the path that leads to

the highest possible sum of all the pair-scores it contains.

First step: compile all pairwise scores into a matrix.

ABCD
glol1[0]o0
plolojoj]
clojojg]o
plofofof]

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)

The first step of the Needleman-Wunsch algorithm for global, optimal sequence
alignment. This algorithmic strategy is frequently referred to as Dynamic
Programming.

 http://en.wikipedia.org/wiki/Dynamic_ programming
 http://en.wikipedia.org/wiki/Needleman-Wunsch__algorithm

« http://www.avatar.se/molbioinfo2001/dynprog/dynamic.html — Dynamic
programming example, courtesy of Per Kraulis.
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algorithm

Second step: The highest score in the last column and row is the is
highest pairscore we put there from the scoring matrix. This is the Base
Case, if we think about the recursion, because there is no previous score

we had to consider.

ABCD
glol1[o]o
plolojo]]
clojojg]o
plojofof]

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)

The next scores we need to calculate are the cells in the previous column or row...
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algorithm

Third step: Extend the path. Assign to each cell of the next column and
row the highest value we can get by adding to its current value a value

from a previous cell that could be part of an alignment path.

A BCD A BCD
g [0]1]040 glol1[1]0
p 00 lp.'-l']_ plolol1/1
c |0Lo.l].\0 c |1]1 o0
plojojofg]i plofofol]

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)
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algorithm

Repeat: (Assign to each cell of the next column and row the highest value we
can get by adding to its current value a value from a previous cell that

could be part of an alignment path.)

ABCD ABCD ABCD
gloll]lojo| g o“_'|_-._.10 g l0l31]0
plojololl| p|alodl1l1]| p[2[201]0
c|9/9/1 0/ ¢~ |1|18MO0 ~ |11 0
plolojofl plololof il p|ofo]o

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)
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algorithm

Final step: The highest possible score for the alignment path matrix is

found after the matrix is filled.

Once the highest possible score has been determined, we only need to find
the cells that have contributed to this score. The optimal alignment is

given by the path that contains these cells. The cells are simply retrieved by

backtracking.

A BCD A BCD ABCD ABCD

p [0 0 BolLiLlo B LOESN] |0 g 23810

DOOO]_ Dooll E221 D2211

c|9j0(10 c|1/1E80 ~ (7] 0| ¢ | 1]1)280

plolojo ] plolojof ] p|ofo]o plLojolofy
1T
- BDCD

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)
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indels

In reality, related sequences often have different lengths. Ends can be
lengthened and shortened, and segments ranging from single residues to
entire domains can have been inserted or deleted. We need to take into
account that indels are possible, but infrequent in evo-

lution.

Empirically:
Insertion/deletion events are rare, and longer

gaps are less frequent than shorter ones.

... unfortunately, we have no quantitative, mechanistic model for these events.
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modeling indels

Commonly, a gap penalty is calculated from a constant value for

opening the gap (to reflect the rarity of the event) and an
increment for every extension (to reflect the fact that longer

gaps are less frequent than shorter ones).
w(l)=a + bl

This type of gap penalty is called an affine gap model.

It does not reflect exactly what we actually observe in biology.
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scoring indels

Database analysis shows that gaps are log-distributed.

An attempt to model this
situation has proposed a sum of

exponentials ...

P(n)=Y Ae™

... but other studies have not
shown a clear advantage of
logarithmic over afline gap

penalties.

Qian & Goldstein (2001)
Proteins B:102-104

10 -,

10"

10°44 =

0 50 100 150 200

Fig. 1. Log plot and log-log plot of observed structure-based gap
length distribution, compared with a quadruple-exponential fit (Eq. 8).

Qian and Goldstein (2001)! have shown that a log linear plot of gap probabilities in
aligned sequences can be modeled by a sum of four exponential functions. This can
be interpreted to mean that several molecular mechanisms could exist for the
generation of indels, each with a distinct and characteristic probability of occurrence.

However, logarithmic gap penalties do not improve alignments (Cartwright, 2006)*
Recent developments focus on the inclusion of additional knowledge about the
sequences, such as secondary-structure specific gap penalties, or using sequence
profiles or multiple alignments, rather than aiming to further improve the gap
parameters. The bottom line is: we have no good model for indels, but we have no
significantly better model than the simple affine model.

Uhttp://www.ncbi.nlm.nih.gov/pubmed /11536366
2 http://www.ncbi.nlm.nih.gov/pubmed /17147805
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i]ll!i'l‘

Calculating affine gap penalties is
computationally simple:

reduce the score that is added to a
cell according to the number of
rows or columns that need to be
skipped.

11

Example parameters:
Gap insertion: -3
Gap extension: -1

Insert a gap,

extend by two: add score — 3 — 2

Insert a gap,

extend by one: add score -3 — 1

Insert a gap: add score — 3

Ungapped continuation: add score to cel
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alporit hm propert ies

Pairwise Optimal alignment

Reasonably fast for pairwise gene comparisons.

Too slow / needs too much memory for
database scans or whole genome alignments.

Guaranteed to always give a mathematically optimal
alignment.

Alignment not guaranteed to be biologically correct
or unique.

Alignment will depend on scoring matrix.

Alignment will strongly depend on (empirical !) gap
insertion and extension parameters.
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local and _‘;tn bal ..

Often the score for an alignment between two substrings can be
larger than the score for an alignment between two entire

sequences. This is especially the case if a sequence has several

domains.
Y The Smith-Waterman variation of the
N = Needleman-Wunsch algorithm

computes the highest scoring
aligned substrings.

Alwavys use local alignment -

- when the sequences have very
different lengthas

- when the sequences are only related
in domains or subdomains

In the example above, the ankyrin domain repeats of the yeast transcription factor
Mbpl are shown as a red box in this graphic of domains in sequence families,
compiled in the CDART database!. This domain is found in many other proteins,
but some of them do not share the other sequence elements found in Mbpl1 - they are
only partially related. Attempting a global sequence alignment with such sequences
would attempt to align sequences that are actually not homologous, leading to
inappropriately low scores and the danger of spurios results.

Temple Smith and Michael Waterman? have slightly modified the Needleman-
Wunsch algorithm, 11 years after its publication, to find the highest scoring local
alignment: this is the highest match in the matrix, tracked back to the point where
the pathscore drops below zero. The rest of the algorithm works in exactly the same
way. There is only one detail that needs to be considered: the substitution matrix
must yield a negative expectation value for random alignments. If this were not the
case, random pairs could extend the locally high-scoring alignment unreasonably.

Uhttp://www.ncbi.nlm.nih.gov/pubmed/12368255
2 http://en.wikipedia.org/wiki/Smith_Waterman_ algorithm
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local and global ..

"True” alignment = Mppy: 391 IDPELHTAFHWACSMGNLPIAEALYEAGTSIRSTNSQGQOTPLMRSSLFHNSYTRRTFPRI 450

based on match to cd00204: 3 RDEDGRTPLHLAASNGHLEVVKLLLENGADVNAKDNDGRTPLHLAAKNGH---—--- LEI 55
profile Swid: 517 IDDQGHTPLHWATAMANIPLIKMLITLNANALOCNKLGFNCITKSIFYNNCYKENAFDEI & 576
1_ 200 400 == 1) &0 1000 10493
| —- l- 1 . " 1 _-_
Swid APSES || ANK
| E ANK I ANK 3

Mb (T
B7 TER- eI
1 //' | firp ]
Local alignment™ S/

finds only APSES

: *(EBLOSUME2; opan=12, axtend=4)
domain

Mbpl: 391 IDPELHTAFHWACSMGNLPIAEALYEAGTSIRSTNSQGQTPLMRSSLFHNSYTRRTFPRI 450
: > izl i e F I L2 e s Bein e e | |lo e 0828100885 e os o s |
finds: Ankyrin repeats Swid: 517 IDDQGHTPLHWATAMANIPLIKMLITLNANALQCNKLGFNCITKSIFYNNCYKENAFDEI 576
too,

Global alignment®

In this example, Smith-Waterman local sequence alignment detects only the high-
scoring similarity between Mbpl and Swids APSES domains. The lower scoring,
more highly diverged ankyrin repeats are missed by the algorithm. The Needleman-
Wunsch alignment finds both sets of sequences, albeit there are segments in between
that don't align well at all.

In this case, one could do a local alignment, remove the matching segments from the
input sequences and then redo the alignment to see if any other significantly similar

segments are found.
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sequence comparison

When to use ...

No alignment ...

Annotations of functional elements or domains may be conserved
(e.g. TM-helices, phosphorylation sites, 2° structure, disordered
segments ...). Especially significant if sequence divergence is
otherwise large.

Local alignment ..

Alignment in parts. Appropriate if sequences are homologous only
in part, or if parts of the sequence are structurally dissimilar, or if
inserted domains would create unrealistically large gap penalties.
May need to be iterated.

Global alignment ...

Appropriate if sequences are homologous over their whole length,
especially to bridge segments of high divergence, and to discover
islands of high similarity.
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empirical rules

What to do ...

Rule 1: Only align sequence that is homologous

Always align domains (if known) separately.
Rule 2: Only align sequence that is conserved.

Always align translated amino acid sequence—never
nucleotide sequence—unless you are studying nucleotide
variation.

Don't align gapped regions !

Of course the algorithms will optimally align anything you feed them, but for anything but homologous
sequence the alignment will be meaningless. Aligning non-homologous sequences 1s a nice example

of cargo-cult bioinformatics.

Therefore: if you already know that your proteins are multi-domain, separate out the domains before
aligning. If you don't know, critically look at the results, generate a hypothesis about the domain
structure and rerun your alignment on the domains separately. The exception, of course: is if you know
(or believe) your two proteins comprise homologous domains in the same order.

Amino acid sequences are much more highly conserved then genomic sequence and even if you have

nucleotide sequences to start from, you should always translate them before aligning. In general, many
more matches are required to make nucleotide sequence matches significant, since the alphabet is much
smaller. Also, there is no good notion of "similarity" or "conservative mutation" at the nucleotide levell.

The only reasons to align nucleotides are:

o if you are actually interested in the number and type of nucleotide exchanges, such as in gene
assembly and EST clustering, studies of SNPs, in comparative genomics, phylogenetic studies of closely

related genes, or defining primer binding sites;

« if you are aligning untranslated sequences; in particular if it is the nucleotide sequence itself that is
conserved, such as in DNA binding sites or splice sites; or if you are studying RNA genes, such as
tRNA or rRNA.

A corollary is that you should not try to align sequences in highly gapped regions. These residues have
evolved in a non-comparable context, they cannot have been conserved by evolution for that reason and
applying our scoring matrices cannot compare such residues in a meaningful way.

! However, transitions g{conserving pyrimidines or purines) are more frequent than transversions. See http://
en.wikipedia.org/wiki/Models_of _DNA__evolution for how this is modelled.
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parameters

How to set penalties ...

Higher opening penalties make gaps less frequent.
Higher extension penalties make gaps shorter.
The effect of the penalties depends on the scoring matrix!

Typical opening penalty: 2-3 times an identity score.

Typical extension penalty: . / 5 to : / 19 of an opening penalty.

Default penalties for BLOSUNMG2: -11 and -1 at NCBI (BLAST)
-10 and -0.5 at EMBOSS (Meedle, Water)

59



alignment quality

How to report results ...

The alignment score is a single number that measures

the quality of the alignment. Scores depend on:

- the matrix

- the gap insertion penalty

- the gap extension penalty

- the end-gap penalty

- the algorithm (local or global, optimal or heuristic)
Therefore, all these parameters need to be reported along with
the alignment (similarity) score, otherwise the number is
meaningless.

Alternatively: report % identity! This allows a certain degree of
comparison between alignments.

Note that reporting %-identity is an objective metric, but it still depends on the
exact alignment that has been produced and it does not capture the quality of gaps.




tecision thresholds

How to interpret ...

No clear threshold exists for homology.
Homologous proteins can have as little as < 10% identity. (This is a problem).

Non-homologous proteins can have as much as > 50% identity
over stretches of their alignment. (This is also a problem).

Rules of Thumb:

More than 25% sequence identity over an entire domain (e >100
residues) almost always means homologous.

More than one indel per 20 residues
almost always means non-homologous.

A Rule of Thumb does not replace sound judgement! Corroborating evidence can come from shared annotated
function, conservation of conspicuous features (eg. C, H, W residues), multiple alignments ... Always examine
alignments carefully: what is conserved but would not need to be if the sequences were not homologues?

What is not conserved but would be expected to be if the sequenees were homologoes?

Empirical thresholds to conclude that two sequences are homologous

Identities of 20 to 25% are also called the ''twilight zone'' - in which
homology is likely but can't be confidently inferred from sequence
similarity alone.

These thresholds are based on sequence similarity after optimal
alignment. Additional supporting evidence for homology can be
contributed from:

o simlar length;

o similar functional sequence patterns (e.g. cys/his clusters);

 similar number of transmembrane helices;

« similar conservation patterns or conserved motifs;

o similar amino acid frequencies or bias (eg. polyglutamine, polyproline);
o similar patterns of disordered sequence;

e similar structure;

o similar function;

o similar genomic context;

« similar interactors;

o similar subcellular localization;

. []

61



EMBOSS tools

Needle - for optimal global alignments

Water - for optimal local alignments

stretcher - for long sequences: half as fast as NW but only linear to the

shorter sequence in memory.

matcher - for long sequences: slower than SW, but only linear to the shorter

sequence in memory; also gives suboptimal matches.

supermatcher - rough results for very long sequences; heuristics, based on

word matches.
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Needle

Output of EMBOSS
package global sequence
alignment program Needle
with sequences for yeast
Swid and Mbpl.

(Default parameters),

The first ~200 amino acids
of the alignment are
shown, these include the
conserved DNA binding

domain.

| - identical amino acids
¢ - highly similar pairs

« - similar pairs.

# Bligned_sequences: 2

# 1: Mbpl

# 2: S5wid

# Matrix: EBLOSUME2

# Gap_penalty: 10.0

# Extend penalty: 0.5

#

# Length: 1147

# Identity: 266/1147 (23.2%)

# Similarity: 414/1147 (36.1%)

# Gaps: 368/1147 (32.1%)

# Score: 640.0

“-‘ﬁl _______________________________________

Mbpl 1 MENQ--IYSARYSGVDVYE-

-1 l-l]--]1]]
Swid 35 MPPDVLISNQKDNTNHQNITPISKSVLLAPHSNHPVIEIRTYSETDVYEC
Mbpl 18 FIH——STGSIMKRKKDDWVNATHILKAANFAKBKRTRILEKEVLKETHEK
T P T [ ]eeeee ]
Swid 51 YIRGFETKIVHRRTKDDWINITQVFKIhQFSKTKRTKILEKESNDMQHEK
Mbpl 66 VQGGFGKYQGTWVPLNIBKQLAEKFSVYDQLKPLFDFTQTDGSASPPPRF
NN N e B e e R e Ry [-].

Swid 101 VQGGYGRFQGTWIPLDSA‘KFLVNKYEIIDPWNSILTFQFDPNNPPPKRS

Mbpl 116 KH ——————————————— HHASKVDRKKAIRSRSTSBIMETKRNNKKAEEN
------ [Ife o=l THE wfeaelf]oze]

Swidg 151 KNSILRKTSPGTKITSPSS'&'NKTPRKKN SSSSTSA——TTTMNKKGKKN

Mbp1l 151 QFQ---55KILGNPTAAPRERGRPVGSTRG

N S e
Swid 198 ASINQOPNPSPLONLVFQOTPOOFQVNSSMNIMNN————- NDNHTTMNFNND

17
50
65
100
115
150
150
197
177

242
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Water

Output of EMBOSS
package local sequence
alignment program Water
with sequences for yeast
Swid and Mbpl.

(Default parameters).

The first ~200 amino acids
of the alignment are
shown, these include the
conserved DNA binding

domain.

| - identical amino acids
¢ - highly similar pairs

« - similar pairs.

# Aligned sequences: 2
# 1: Mbpl
# 2: Swid
# Matrix: EBLOSUM62

# Gap_penalty: 10.0

# Extend_penalty: 0.5
#

#

#

#

#

#

Length: 1088
Identity:
Similarity:
Gaps:
Score:

263/1088 (24.2%)
411/1088 (37.8%)
317/1088 (29.1%)
644.5

Mbpl 8 ARYSGVDVYE-FIH--STGSIMKRKKDDWVNATHILKAANFAKAKRTRIL
Swid 40 LriéETé&igcylRGPELKiv&niréé$$1éiéé&réri@gsémééixii
Mbp1 55 EKEVLKETHEKVQGGFGKYQGTWVPLNIAKQLAEKFSVYDQLKPLFDFTQ
e 1 R R TR LS S L Rk
Mbpl 105 TDGSASPPPAPKH-—-—-————————mm HHASKVDRKKAIRSASTSAIME
Swid 140 FDP&NPLLKRSLNSILRKTSPGTKITSPSSYéLTPéLLN-SLSALAA—~é
Mbpl 140 TKRNNEKAEEN- - QFQ---SSKILGNPTAAPR
Swi4 187 LTAALALGKKLASINQPNPspLQNLVPQTPQéLéVNsAMNlMNN ----- N
Mbpl 167 KRGRPVGSTRGSRRKLGVNL-————-—=—-== QRSQSDMGPPRPAIPNSS
Swid 232 Bﬁﬁiéﬁﬁﬁﬁﬁﬁ%LHNLINNISNNSNQSTIIQQQésiﬁ;ﬁéL ------ NNN

54

89

104

139

139

186

166

231

204

275
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internal repeats

Internal repeats are frequent in
proteins. They may correspond to
domain fusions of homo-oligomeric

prototypes.

Such repeats cannot be detected by
comparing a sequence with itself, using a
normal optimal sequence alignment
algorithms: that would only find the
sequence identity. Instead, suboptimal

alignments need to be analyzed.

[

Tachylectin sequence DotPlot (from Dotlet)

Tachylectin: cherry-blossom symmetry in a lectin from the Japanese horseshoe
crab.

The dotplot that compares the sequence with itself shows the self-identity matches
on the diagonal and five domains that are all mutually similar (but not identical) to
each other, seen as partial similarities on the off-diagonals. If you think of the path
matrix as resembling a dotplot, the repeat alignments we need to analyze correspond
to such off-diagonal stretches of high similarity.




RADAR

Internal repeats are frequent! (Examples from CATH)
)

Detection of internal repeats requires to keep track of suboptimal alignments.

No. of Repeats|Total Score|Length |Diagonal| BW-From| BW-To| Level
Example:

3| 120.73| 28| 120 518 545 | 2
RADAR finds
. 518- 545 (49.88/33.72 DDQGHT TAMANIPL.vs v o IKML,ITLN.A
Ankyrin repeats ( ) MG ELUNAEAIAN
. 604- 638 (24.82/12.79) .NKSKNPMITIKSYMDSIILs1ggqqd¥NLLKICLNyQ
in Swid 639- 666 (46.03/30.51) DNIGNTPLELSALNLEFEV. .. ... YNRL.VYLG.A

http://www.ebi.ac.uk/Radar/

The RADAR server! at the EBI analyzes sequences for internal repeats.

Uhttp://www.ebi.ac.uk/Radar/
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shmmaryv

Homologous sequences are similar.

Suitable pair-score matrices can measure similarity
under a model of evolutionary conservation of amino-
acids.

The "correct" alignment for homologous sequences can
not be computed. However, we can compute an optimal
alignment.

This computation (7) assumes that pair-score based
similarity measures are relevant, () uses an empirical
model of indel penalties, and (%i) requires O(n?)
computational resources.

... and the O(n?) resource requirement means the algorithm is too slow for searches
on a database scale i.e. in very large search spaces.
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