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The applications of HMM

Speech Recognifion

Iphoneds Siri :
a voice-controlled artificial intelligence system

Phoneme

|ﬁ| Android 4.0:

a real-time speech-to-text translation
anN>x0ID

Biological sequence searching and aligning Nucleotides & AAs
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CG island Example

Cytosine (C) 5-Methylcytosine Thymine(T)

In the human genome wherever the dinucleotide CG, the C is typically chemically modified by
methylation. There is a relatively high chance of this methyl-C mutating into a T, with the
consequence that in general CG dinucleotides are rarer in the genome. For biologically
important reasons the methylation process is suppressed in short stretches of the genome, such
as around the promoters or ‘start’' regions of many genes. In these regions we see many more

CG dinucleotides than elsewhere, and in fact more C and G nucleotides in general. Such

T ——————

? Given a short stretch of genomic sequence,

« how would we decide if it comes from a CG island or note
? How do we find the CG islands in a long unannotated
sequencee

regions are called CG islands .
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Standard Markov Model (introduction) i

ATCGCCGATGGTAATGCCTT Y I
\ Y J X ~

Length (L) = 20 "”

® States:
ATC, G

Bayes rule
P(X)Y) = P(X]Y)P(Y)
Par = The probability of A follow by T

® Transition probability:

® Sequence probability:
PUQ = P(men—n -‘----;Xl)'
= PX|Xioq, - Xp) PCX o)X g, o Ky APCXG)

Markov property

V d ; C LLIT1 O C
sequences of length L is PO Xi1,...X1) = P(Xi | Xi1 )

DASCA O C dDOVC dl' K
probability of all possible
equal to 1.



'S'I'q ndCII'd MCII‘kOV MOdel (with begin and end state) ||~
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ATCGCCGATGGTAATGCCTT \ 7
\ Y J ‘, T
Length (L) = 20 ":
ry

® States:  § b\

B,AT,C,G,E | B

® Transition probability: I 1

PXi=A)="Pss. The probability the sequence begin with A. -

P(E/X. = T) = Prz: The probability the sequence end with T. f i
® Sequence probability (with length L): 1 10

P(X) = P(EIX)P(X;]X 1) .. P(Xo|X1)PCX,) |

over all sequences of leng and properly tferminafing by making a
transition to the end state) is g(1- €)t-1. Use this result to show that the sum of
the probability over all possible sequences of any lengthis 1.
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how would we decide if it comes from a CG island or not? —
— |
From a set of human DNA sequences we exiracted a total of 48 putative |
CG islands and derived two Markov chain models, one for the regions 1
labelled as CG islands (the "+” model) and the other from the remainder of X 1
|
ﬁ

the sequence (the '-" model).

Model + Model -
)

+|A[Cc|G|T - |Alc|e|T
0.180 0274 0426 0.120 - 0.300 0.205 0285 0.210
- 0322 0298 0078 0.302

|

|

|

- 0248 0246 0298 0.208 | |

| |
1
|
|

1

0.171 0.368 0.274 0.188
0.161 0.339 0375 0.125

0.079 0.355 0.384 0.182

- 0.177 0239 0292 0.292

| | |
P(x|Model +) [ P(x|Model -)

| Log-odds score: $(x) =log(P(x| Model +)/P(x | Model -))




Hidden Markov Model why umm

How do we find the CG islands in a long unannotated
sequence?¢

LS S

- We can use Standard Markov Model to
calculate the log-odds score for a window of,
say, 100 nucleotides around every nucleotide In
the sequence and plotting it.

We need a single Model to incorporates

Model+ and Model- l
l E—




'Hidden MCII‘kOV MOdel (infroduction)

State path T- C+ G+ C+ C-
()

Sequence T C G C C
path (x)

' The essential difference between a Markov chain and a hidden Markov Model is that ‘
for a hidden Markov model there is not a one-to-one correspondence between the |
states and the symbols. (For example state C+ and C- both emit symbol C). Therefore |

' we need to distinguish the sequence of states from the sequence of symbols

® States:
A+ A-T+T1-,C+,C-,G+,G-
® Symbols
ATCG
® Transition probability
ay = P(m=1|7=k)
® Emission probability
e (b) = P(x;=b | 7= k)
®Sequence probability (with state path r):
P(X. ) = @yl Ti=1101€5i (Xi) Qi miy



'Hidden Mdl‘kOV MOdel (The most probable path)

Many state paths can generate the target sequencell!

yd T+ C+ G- - C+ c-
n2 T- C+ G+ C+ c+
n3 T- C- G+ C- c-
X T C G C C

The most probable path : ©* = argmax P(x, n)

Viterbi Algorithm

Vi(i+1) =e, (x;,1)max(Vy(i)ay)

*V,(i): The probability of most probable path up to x, ending in state k.
*V,(i+1) : The probability of most probable path up to x,,, ending in state 1.

*a,,. Transition probability from state k to state |
*e, (X;,1) : Emission probability (x,,; emits from state 1)
—

Initialization: =0, V,(0) = 1, V,(0) =0
| Termination: P(x, n*) = Max, (V. (L) a,, ), n* = argmax_(V, (L) a,,))
| Note: The start and end state both are 0




'Hidden MCII‘kOV MOdel (the full sequence probability)

We must add the probabilities for all possible paths to obtain
the full probability of x.

nl T- C+ G+- C+ C-
n2 T+ C- G+ C- c-
n3 T- C- G-+ C+ c-
X T C G C C

The full probability of X : P(x) =5 P(x, ©)

Forward Algorithm

fo(i+1) =en(xi.q) 2 fi(i) ay,

f (i): The probability of the sequence up to x;, ending in state k. P(x; x;, m;=k)
f(i+1) : The probability of the sequence up to x,,, ending in state h.
*a,;, : Transition probability from state k to state h

e, (X;,1) : Emission probability (x;,, emits from state h)
—

Initialization: =0, f;(0) =1, f, (0) =0
Termination: P(x) =3, f,(i+1) a,
Note: The start and end state both are 0
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'Hldden MCII‘kOV MOdel (the posterior state probabilities) |

N
What if different paths have almost the same probability as the i
most probable one?e We need posterior decoding "
i e 1
The posterior probability: P(r; =k | x) A
- -
X /
[ P(m; =k|x) = P(x, ; =k) / P(x) P(x) : by forward algorithm ] Pj}
1 jfi

f (i) : by forward algorithm b, (i) : by backward algorithm

backward Algorithm

[P(x, 7 =K) = P(X;.. Xy TEK)P (Ko 1o X, | Xgoe X T=K) = i (DDP(Xiay-..X, | m=K) = £ (i) by (i) ] : i
\

|

I

Recursion: b (i) =5, a,.e,(:.;) by(i+1) 1 :
*b,(i): P(Xis1..... X | m=kK) | /
bp(i+1) : P(Xjsz.... X | 741 =h) B fl
*a,;. Transition probability from state k to state h 3
e}, (Xi,;) : Emission probability (x;,; emits from state h) | | ]

| Initialization: b, (L) = a,,
Termination: P(x) =, g e, (X 1)PK(1)
Note: The start and end state both are 0




Ll ~sasvazes Co~n~A—~if, s
now wce opcClily |

Step1: Design the structure (states,connections)
Setp2: Estimate the transition a,, and emission e, (b) probabilities.

-

.

Estimation when the state sequence is known

Ay = A/ 21 Axne
‘e (b) = E(b) / >, E(b’)

A..: number of transitions k to h in training data + ry,
E.(b): number of emissions of b from k in training data + r (b)

Note: r,, andr, (b) are pseudocounts.

Counting!

Estimation when the state sequence is unknown

*Baum-Welch algorithm
Viterbi training

Trafning!

\\
i
I
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'Hidden MCII‘kOV MOdel (parameter estimation)
BRaum-Welch nlnnrlfhm {E_M\

Objective: Maximize };logP(xi|8) (j training sequences)
0 an=An/2n A elb) =E(b)/ 2, E(b’)

A, and E, (b) are the expected number of times each transition or
emission is used, given the training sequences.

Awp =22 P(m=k, m,, = h|xi,0)
E(b)= 3,3, P(m =k, X = b|x.,0)

P(TC k TCH_] = h |X 9) - fk(l)dkheh(xl.,.])bh(l‘l'")/P(X)
P(r,=k, x,=b|x,0) =f[(i)b(i)/P(x) when x; =b, 0 otherwise.

Recursion
For each sequence j=1 ... n:
Calculate f, (i) for sequence j using the forward algorithm
Calculate b, (i) for sequence j using the backward algorithm
Add the conftribution of sequence jto A, and E (b).
Calculate the new model parameters a,,, and e, (b).
Calculate the new log likelihood of the model

Inifialization:  Pick arbitrary model parameters. 6 [a,,, e,(b)]
' Termination: Stop if the change in log likelihood is less than some
predefined threshold or the maximum number of

iterations is
exceeded.
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Hidden Markov
T

d el parameter estimation)
Viterbi Tr \g al

nin laorithm

!2.
-«a

This is not a frue maximum likeihood objective function, but this
alogrithm can coverges precisely , because the assignment of paths is

a discrete process, and we can continue until none of the paths
change.
[/

|
i
i
Objective: Maximize 3;logP(xi|©, = *(x;)) (j fraining sequences) 1
il
|
|
| 4

0: 0= An/2h A €u(b) = Ei(b)/ 2, E(b7) I |
£
|

i

A, and E,(b) are the number of times each transition or emission is used,
given the training sequence and its most probable path.

Recursion

|
For each sequencej=1..n: 1
Find the most probabel path = *(x;) and its probability. I i

L}

1

Given the path calculate the new parameter by counting.
Calculate the new log likelihood of the model

Initialization: Pick arbitrary model parameters. © [a,,, e, (b)]
' Termination: Stop when no paths changes.




*PSSM and Profile HMM T~y
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- Sequence “i

\‘\» fdm"Y /-’; E=tmm = £3 ; Enem 2 ‘ﬂ
-~ - L e — S — 1 S —— é
I,
eince || --- MSAVSCSTASSSGGRFRSKKKTSIHSP. .. 'i‘
: ﬁ ,
Are these conserved features present in the target sequence? y A\
We need a statistic model! F
S —————————.  — F

i i
PSSM o o
I [}
Poistion sepecific score matrix 1 i

P(X[M) = [Ni=11o18i(X:)
e,(x;): the probability of observing residue x;in position i.
S (score) = 3 ,_yolog(ei(xi)/q(xi))
qa(x;): the probability of x; under a random model

Inadequate representation of the MSA (no gaps!)




PSSM and Profile HMM

Are these conserved features present in the target sequence?
We need a statistic modell!

Py ¥
Profile HMM

v N

Deal with insertion and deletion

PSSM:

HMM:

M;: Match state (emit resude with probability ey;(b) , b is one of 20 possible AAs)
l; : Insertion state (allow multiple insertions, emit residues ramdomly)
D;: Deletion state (dummy state, emit no residue to skip current position)

| From multi-sgeuence alignment, we could determine the number of
matich states (design HMM) and the model parameters (train HMM).

Score : Log P(x|M)/P(x|R) M: HMM model R: Random model
The score is calucualted in bits, a high score means the target sequence is more

likely belong to sequence family from which M is trained.




‘HMMer 3 and HMM databases

HMMer3

e
. Website: http://hmmer.janelia.org/
. User Guide: ftp://selab.janelia.org/pub/software/hmmer3/3.0/Userguide.pdf

|l

, =

Main Functions A

*Hmmbuild: Build a profile HMM from an input multiple alignment.
‘Hmmsearch: Search a profile HMM against a sequence database. P /
‘Hmmscan: Search a sequence against a profile HMM database. )

Other utilities I
‘Hmmconvert: Convert profile formats to/from HMMER3 format. o
‘Hmmemit: Generate (sample) sequences from a profile HMM. ' \
‘Hmmfetch: Get a profile HMM by name or accession from an HMM database.
*Hmmpress: Format an HMM database into a binary format for hmmscan.
‘Hmmstat: Show summary statistics for each profile in an HMM database.

T
I
i
—_—— I
1
i
A
1

HMM databases

*PFAM (The wellcome trust sanger institue)
V25.0 (March 2011,12273 families) hitp://pfam.sanger.ac.uk/

*TIGRFAM (J. Craig Venter Institute)
V11.0 (August 2011) hitp://www.jcvi.org/cgqi-bin/tigrfams/index.cgi

Note: PFAM and TiGRFAM both support HMMer3.




‘PrOjeC'l' (Phage/Prophage genome annotation)

- Website: hitp://genedog.med.utoronto.ca:7777/joewu/war/Ppdl.html -
— |
e i

- Browser End: Google web tool kit (Asynchronous javascript and XML-Ajax ) .

- Server End: Perl (CGl)
. Database: MySQL A
- Data Pineline: JSON(Javascript Object Notation) ‘

L~ e W
Bacteriophages (phages), the viruses infecting bacteria, are
the most abundant biological entities on earth. Most

bacterial genomes contain multiple integrated phage y
genomes, called prophages, many of which are capable of ‘
producing viable phage particles. These prophages often
contain genes involved in bacterial pathogenesis, and they

can also mediate significant changes in bacterial physiology.
—————— ——.

This project involves the construction of a web platform that will use to accurately
annotate proteins required for phage morphogenesis. The project involves using a
set of sequence profiles (Profile HMM) derived from alignments of sequences that
are clearly homologous as determined from sequence similarity and genome
position. The web platform will be designed to efficiently assess the usefulness of
these HMMs in accurately identifying proteins of known function. The database will
incorporate genomic position data to validate the accuracy of annotations
provided by the HMMs.

I
i
I
—————————————————— 7
i
i
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Typical Hmmer3 output

> hmmsearch <xxxxx.hmm> <sequence database> xxxx.out

P

# ——— full SEQUENCE === —m—m—————memem thiz domain ———--—ee————— hmm coord  ali coord  enw coord

# target name acceszion  tlen query name acceszion qlen E-value score bios  # of c-Evalue i-Evalue score biags from to from to from to

B o e e e e e e e e -
NP _B4B55AENC_Ba1416 - 151 Phage_Mul PFA7471.6 164 1.52-91 3885 1.4 1 1 1.8e-94 1.7e-91 385.4 1.8 1 184 1 184 1 184 8
MNP _B468968NC_AA1961 - 168 Phage_Mul PFA7471.6 164 1.4e-B3 1984 8.1 1 1 Ze-61  1.9%-53 197.9 6.1 3 164 E 1F@ 3 188 A
¥P_BE1293345ENC_BATAA5 - 181 Phage_Mul PFA747L.6 164 6.7e-28 726 681 1 1 1.de-22 1le-19 72.8 8.1 3 1sl 13 164 12 163 8
¥P_BE1A39813ENC_BA9a16 - 188 Phage_Mul PFA7471.6 164 2.72-89 3838 58 1 1 1.e-11 1.1e-B3 361 2.6 2 148 4 138 3 1398
¥P_BE16EETITENC_B18342 - 191 Phage_Mul PFA7471.6 164 Z.6e-83 349 1.6 1 1 7.3e-1l  6.%-83 335 1.8 3 138 5 129 3 186 @
¥P_B791518HC_AAT7967 - 81 Phoge_Nul PFA7471.6 164 2.5e-86 284 8.2 1 1 2.8e-A9 2.7e-B6 233 8.4 3 67 14 74 11 gl a
NP _9532458NC_AAG345 - 77 Phoge_Mul PFA7471.6 164 B.AAE23 228 @8 1 1 2.8e-A7 @.A6827 218 6.8 3 53 25 A 21 7B
ADABITITEGLZ47132 - 668 Phiage_Mul PFA7471.6 164 A.AE32 18,3 B.8 1 1 3.4e-86 A.AE33 18.3 6.8 3 31 1a 35 [ 59 A
YP_BE14917Z0ENC_BA9ETS - 68 Phage_Nul PFA7471.6 164 A.A83z  18.3 8.8 1 1 3.9e-86 A.A833 18.3 8.8 & 31 18 35 & 59 A
YP_BE19946268N0_A11619 - 68 Phoge_Nul PFA7471.6 164 A.8832 158.3 6.8 1 1 3.4e-86 A.8833 158.3 6.8 3 31 16 35 [ B3 A
YP_BE1994616EN0_B11628 - 668 Phiage_Mul PFA747L.6 164 A.AA32  18.3 8.8 1 1 3.4e-86 A.AE33 18.3 6.8 3 31 1a 35 [ 59 A
YP_BE1994 7TASENC_B11621 - 68 Phage_Nul PFA7471.6 164 A.A83z  18.3 8.8 1 1 3.9e-86 A.A833 18.3 8.8 & 31 18 35 & 59 A
WP _BEZZZ4BE5ENC_B11267 - 58 Phage_Nul PFA7471.6 164 .83z 18.3 8.8 1 1 3.4e-80 8.8833 18.3 6.8 [} 1 18 35 [} B9 A
YP_BE1463424EN0_BA951A - 51 Phoge_Mul PFA7471.6 164 A.A844  17.9 6.1 1 1 5.3e-86 a.885  17.7 8.4 7 52 13 57 7 66 B
¥P_223854ENC_ARG936 - 148 Phage_Mul PFA7471.6 164 A.AeE3  17.5 1.6 1 2 B.69  6.68+02 1.8 8.8 119 185 35 72 15 gz a
YP_Z23854ENC_BR5936 - 148 Phage_Mul PFA7471.6 164 a.meEs  17.5 1.6 2 2 Ge-a5 a.8z9 18,2 1.4 62 186 g4 125 32 148 8

*
%
b

. E-value:

The statistical significance of the match to this sequence: the number of hits
we'd expect to score this highly in a database of this size if the database
contained only random sequences. The lower the E-value, the more significant
the hit. [Exireme value (Gumbel) distribution]

. Score:
The log-odds score for the complete sequence.
.- Bias:

A correction term for biased sequence composition that's been applied to the
sequence bit score.

The End




