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contractility of cardiomyocytes. These pathways
in cardiac muscle cells are highly conserved across
all vertebrates, which explains the common, ca-
nonical crude oil toxicity syndrome observed in a
diversity of fish species from habitats that range
from tropical freshwater (zebrafish) to boreal ma-
rine (herring).

In conclusion, the oil-induced disruption of
cardiomyocyte repolarization via K* channel
blockade and sarcolemmal and SR Ca*" cycling
should call attention to a previously underap-
preciated risk to wildlife and humans, particularly
from exposure to cardioactive PAHs that are also
relatively enriched in air pollution. /g, inhibition
by DWH crude oil from the MC252 well was
robust, and its properties are consistent with di-
rect channel pore block. These K* channel targets
and their unique gating properties play a critical
role in cardiac action potential repolarization and
are highly conserved across the animal king-
dom (20). These results lead us to believe that
PAH cardiotoxicity was potentially a common
form of injury among a broad range of species
during and after the DWH oil spill. The early
life stages of fish and other vertebrates may have
been particularly vulnerable, given that even a
transient and sublethal effect of PAHs on the em-
bryonic heartbeat can cause permanent second-
ary changes in heart shape and cardiac output (32).
Moreover, the underlying ion channel currents that
drive the electrical properties of cardiomyocytes in
tunas and mammals (such as heart rates), are sim-
ilar (26, 33). Thus, we suggest the extension of our
current oil toxicity results to mammalian, cardio-
myocytes may be warranted to better understand
PAH threats to human health.
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Massively Parallel Single-Cell
RNA-Seq for Marker-Free Decomposition
of Tissues into Cell Types
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In multicellular organisms, biological function emerges when heterogeneous cell types form
complex organs. Nevertheless, dissection of tissues into mixtures of cellular subpopulations is
currently challenging. We introduce an automated massively parallel single-cell RNA sequencing
(RNA-seq) approach for analyzing in vivo transcriptional states in thousands of single cells.
Combined with unsupervised classification algorithms, this facilitates ab initio cell-type
characterization of splenic tissues. Modeling single-cell transcriptional states in dendritic cells and
additional hematopoietic cell types uncovers rich cell-type heterogeneity and gene-modules activity
in steady state and after pathogen activation. Cellular diversity is thereby approached through
inference of variable and dynamic pathway activity rather than a fixed preprogrammed cell-type
hierarchy. These data demonstrate single-cell RNA-seq as an effective tool for comprehensive

cellular decomposition of complex tissues.

nderstanding the heterogeneous and
stochastic nature of multicellular tissues
is currently approached through a priori

defined cell types that are used to dissect cell
populations along developmental and functional
hierarchies (/—3). This methodology heavily relies

on enumeration of cell types and their precise
definition, which can be controversial (4-7) and
is based in many cases on indirect association of
function with cell-surface markers (5—8). Perhaps
the best understood model for cellular differen-
tiation and diversification is the hematopoietic sys-
tem. The developmental tree branching from
hematopoietic stem cells toward distinct immu-
nological functions was carefully worked out
through many years of study, and effective cell-
surface markers are available to quantify and sort
the major hematopoietic cell types. Even in this
well-explored system, however, it is becoming
increasingly difficult to explain modern genome-
wide and in vivo data with refined cell types’
hierarchy and functions that extend beyond the
classical myeloid and lymphoid cell types. For
example, dendritic cells (DCs) are antigen-presenting
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cells that were originally characterized through
their morphology (9) but are now understood to
represent a highly heterogeneous group (/0) with
multiple functions, regulatory circuits, and phe-
notypes (6, 7, 9). Despite considerable efforts and
progress by use of the marker-based approach,
much of the known functional heterogeneity within
the DC group is not truly compatible with any of
the DC subclassification schemes (6, 7, /7). Such
lack of definitive models for cell types and states
is common in many fields of biology.

An attractive alternative to marker-based cel-
lular dissection of complex tissues is to characterize
in vivo cell-type compositions through unsupervised
sampling and modeling of transcriptional states
in single cells. This natural approach was so far
difficult to implement because of many technical
limitations that are being progressively alleviated
with the advent of single-cell RNA sequencing
(RNA-seq) (/2-20). Sampling and sequencing
RNA from dozens of single cells was recently
used to estimate stochastic transcriptional varia-

REPORTS

tion in stationary cultured cells (/4) or during a
dynamic process (/2—14, 16, 19). An unsupervised
framework for dissecting transcriptional hetero-
geneity within complex tissues may therefore be
envisioned, provided that many thousands of cells
can be assayed routinely by using single-cell RNA-
seq and that data from such experiments can be
normalized and modeled effectively even when
cells represent highly diverse cell types and states.

We developed an automated massively par-
allel RNA single-cell sequencing framework
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Fig. 1. Massively parallel single-cell RNA-seq. (A) Distribution of mapped reads per cell in a multiplexed 1536-cell experiment. (B) Mean and variance in
mRNA (blue) and spike-in controls (red). (C) Mean mRNA counts in replicated pooled population of homogeneous (FACS-sorted) pDCs.

Fig. 2. Single-cell dissection of immune cell
types. (A) Color-coded correlation matrix of single-
cell mRNA profiles. Groups of strongly correlated
cells that are used to initialize a probabilistic mix-
ture model are numbered and marked with white
frames. (B) Circular a posteriori projection (CAP)
plot summarizing the predictions of the proba-
bilistic mixture model for the CD11c* cells. Each
cell is projected onto the two-dimensional sphere
according to the posterior probability of its asso-
ciation with the model’s classes. The dimensions
of the CAP plot should not be interpreted linearly
or as principal components. (C) Bar plots depict-
ing similarities of mean RNA counts in inferred
types and Immgen expression profiles. The most
correlated group of Immgen profiles is colored
specifically as indicated for each type. (D) Shown
are CAP plots depicting single-cell RNA-seq data
sets acquired from marker-based FACS sorting for
single pDCs, B cells, NK cells, and monocytes. Sorted
cells are shown in red; density of the CD11c* pool
is shown in gray.
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(MARS-Seq) (figs. S1 to S6) (21) that is designed
for in vivo sampling of thousands of cells by multi-
plexing RNA-seq while maintaining tight control
over amplification biases and labeling errors. The
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Fig. 3. Response to LPS across multiple cell types.
(A) Inferred cell-type frequencies before and after LPS ~ myc 7|
treatment. (B) Clustering of more than 1300 genes give
mean inferred transcriptional mean in each cell type
before and after LPS infection (+). Full gene list is Spic

provided in table S4.
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Fig. 4. Gene modules and the distribution and redistribution of DC
states. (A) Single-cell correlation matrix for cells classified as DCs, showing
detected subclasses using white frames. (B) Type/class distributions of single-
cell RNA-seq data from three different FACS-sorted DC (CD11c enriched)

method is based on fluorescence-activated cell
sorting (FACS) of single cells into 384-well plates
and subsequent automated processing that is done
mostly on pooled and labeled material, leading to
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a dramatic increase in throughput and reproduc-
ibility. To explore the new technique, we sequenced
RNA from more than 4000 mouse spleen single
cells (table S1), focusing initially on a heteroge-
neous cell population enriched for expression of
the CD11c surface marker. We hypothesized that
this strategy for cell acquisition will sample a diverse
collection of splenic cell types while focusing on
the challenging DC populations (6, 7).

Our methodology uses three levels of barcod-
ing (molecular-, cellular-, and plate-level tags) to
facilitate molecule counting with a high degree of
multiplexing. The strategy is to characterize cell
subpopulations first by classifying single cells on
the basis of low-depth RNA sampling and then
studying transcriptional profiles at high resolution
by integrating data from dozens to hundreds of
cells within each unsupervised class. As shown in
Fig. 1A, multiplexing 1536 cells in one sequenc-
ing lane provided an average of 22,000 aligned
reads per cell, and after extensive normalization,
these can be used to unambiguously define 200 to
1500 distinct RNA molecules from each cell. Our
labeling and filtering scheme ensures that spiked-
in technical controls show cell-to-cell variance
that is compatible with the theoretical (binomial)
sampling noise, comparing favorably with previ-
ously reported techniques (Fig. 1B) (/8). This
technical stability substantially increases the in-
formation content of the sampled transcriptional
states, which can be directly modeled as unbiased
samples of the cells’ mRNA pool. In contrast to
technical spike-in controls or the bulk of detected
genes, we observed high cellular variance for a
large number of genes, many of which are well
known cell type—specific markers, suggesting that
this attests for the high degree of heterogeneity
within the splenic cell population (Fig. 1B) and
promoting the idea of classifying cells into sub-
populations on the basis of covariation of such
heterogeneous markers.
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populations: CD8a* CD86™; CD8a intermediate (int) CD86~; and CD8a~ CD4*
ESAM™ (fig. S13A). (C) Gene correlation matrix is depicting potential LPS-
dependent interactions between 225 genes. Key genes are indicated, with the
complete list available in fig. S15.
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To test how sensitive our strategy can be for
characterizing the transcriptional state of sub-
populations in the sample, we estimated coverage
and mean mRNA molecule count reproducibility
for groups of 10 to 40 single-cell profiles, repre-
senting 0.6 to 2.4% of the cells on one sequencing
lane. Analysis of single-cell mMRNA profiles from
FACS-sorted plasmacytoid DCs (pDCs) (Fig. 1C
and fig. S6) confirmed that pooling of homoge-
neous cell populations provides rich and highly
reproducible transcriptional profiles. For a sub-
population at a frequency of 2.5%, the assay report
on 1255 genes with a standard deviation of less
than 35% of the mean, and on 324 genes with a
standard deviation of 20% of the mean. Together,
the availability of high-variance marker genes and
the dynamic range provided by pooled single-cell
transcriptional profiles enable unsupervised dis-
section and characterization of heterogeneous cell
populations, opening the way for ab initio cell-
type decomposition of splenic populations at a high
level of detail.

We have implemented a probabilistic strategy
for unsupervised classification of cells into “ideal-
ized types.” Hierarchical clustering (Fig. 2A) defined
seeds of highly correlated cells, leading to the ini-
tialization of a probabilistic mixture model and
classification of single cells into types or families
of homogeneous states. Visualization of the multi-
class data by using a new circular a posteriori
projection technique (Fig. 2B) represented the
splenic cell population as a combination of several
molecular behaviors, five of which (classes [ to V)
being distinctively separated from a group of more
loosely defined classes (classes VI and VII). The
frequencies of classes I to V range between 3.7
and 17%, allowing in all cases to infer rich tran-
scriptional states through in silico pooling of single-
cell mRNA profiles within each class. Analysis of
gene enrichment (table S2 and figs. S7 and S8) and
comparison of these profiles with existing tran-
scriptional profiles of classical hematopoietic pop-
ulations (www.immgen.org), unambiguously linked
classes [ to V to B cells, natural killer (NK) cells,
macrophages, monocytes, and pDCs (Fig. 2C). The
remaining classes were all linked to DCs. FACS
analysis using classical surface markers confirmed
our in silico estimations of the frequency of B
cells and pDCs within the CDI1lc-enriched
splenic cell population (fig. S9). Further analysis
and additional single-cell quantitative polymer-
ase chain reaction experiments confirmed that
“marker” genes are robustly enriched in their
relevant subpopulations (figs. S10 and S11).
Using classical marker-based sorting, we fur-
ther validated our approach with additional
single-cell RNA-seq data from FACS-sorted B
cells, NK cells, pDCs, and monocytes. Projection
of the new data onto the model we generated from
the splenic population showed remarkable com-
patibility between the traditional marker-based
cell-type definition and the marker-free single-cell
RNA-seq technique (Fig. 2D). Analysis of splenic
cell populations therefore showcased single-cell
RNA-seq as a direct and unsupervised way for
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identifying and characterizing subpopulations
within heterogeneous tissues.

We profiled additional 1536 single cells from
spleens that were exposed to lipopolysaccharide
(LPS) for 2 hours (22), aiming to test how an im-
mediate response to an infection-mimicking stim-
ulus can be deciphered across the heterogeneous
splenic cell population. We found that the LPS-
treated cells are broadly classified into similar cell
types to those observed in untreated cells, with
some changes in the relative representation of dif-
ferent types (Fig. 3A). Using the non-LPS mixture
model, we classified the non-LPS and LPS-exposed
cells into classes and inferred a rich transcriptional
profile within each class before and after treatment.
Clustering 1575 variable genes identified groups of
cell type—specific response genes (such as 7nf and
Marco in macrophages and Xc/l and Gzmb in NK
cells), and a large group of type I interferon response
genes (Irf7, Stat2, Ifitl, Cxcll0, and hundreds more)
activated pervasively in all or almost all cell types
(Fig. 3B, fig. S12, and tables S3 and S4).

With thousands of samples readily available,
single-cell RNA-seq is poised to go beyond the
classical cell-types hierarchies that are outlined by
current marker-based approaches, examining com-
plex relations between cell subpopulations or con-
tinuous spectra of types. Analysis of 1031 single
cells that were associated with DC-related classes
(VI and VII) in our unsupervised CD11c" model
(Fig. 4A) indicated that although 15% of these
cells (class DC1) are strongly linked together, the
remaining bulk of DCs could not be organized
along a clear clustering hierarchy (/7). Nevertheless,
we found strong support for substantial internal
organization within the remaining DC population
(DC2 to DC4) (table S5), including a group of
cells coexpressing Relb, Nfkbia, and additional
associated genes (DC2) (fig. S13). More gener-
ally, we have identified several gene modules that
represent combinatorial pathway activity within
the DC bulk (fig. S14), indicating that despite the
lack of a clear hierarchy, the DC cell population is
governed by a high degree of transcriptional or-
ganization. Additional single-cell sequencing of
CD8" CD86", CD8™ CD86 ", and CD4" FACS-
sorted populations (Fig. 4B) showed that this or-
ganization can be approached to a limited extent
with existing marker-based classification. Remark-
ably, exposure to LPS reorganizes the DC popula-
tion substantially, with a large number of gene
modules being activated in a highly heterogeneous
fashion (Fig. 4C and fig. S15). According to our
analysis, certain specific CD4" DC subpopula-
tions are activating the Irf4, tumor necrosis factor,
and transforming growth factor—f pathways (fig.
S16 and table S6), whereas other pathways (such
as Irt7) are activated pervasively (table S5). This
combinatorial activity of pathways within the LPS-
exposed DC pool is not represented in preexisting
DC subtypes according to our data. Committed and
developmentally stable myeloid and lymphoid cell
types maintain their identity during immediate
response to infection while responding through
generic and cell type—specific pathways. These

REPORTS

pathways create substantial cell-to-cell variance
and define new cell subpopulations within each
of these cell types (fig. S17), forming diversity
that may have functional implications. Observa-
tion of transcriptional subpopulations, however,
does not necessarily imply the existence of fur-
ther committed and preprogrammed cell subtype
hierarchy.

We presented this framework for broad sam-
pling of single-cell transcriptional states from
tissues and demonstrated how it can be used to
dissect complex functions in a bottom-up fash-
ion. MARS-seq can be readily applied to tissues
and organs in normal and disease states to re-
define their cell-type and cell-state compositions
and link it to detailed genome-wide transcrip-
tional profiling. Given the inherent stochasticity
and heterogeneity of multicellular tissues, this ap-
proach can prove essential for understanding how
in vivo biological function emerges from complex
cell ensembles.

References and Notes
1. M. Acar, ]. T. Mettetal, A. van Oudenaarden, Nat. Genet.
40, 471-475 (2008).
2. M. B. Elowitz, A. ]. Levine, E. D. Siggia, P. S. Swain,
Science 297, 1183-1186 (2002).
3. R. N. Germain, Nat. Immunol. 13, 902-906 (2012).
4. S. C. Bendall et al., Science 332, 687-696 (2011).
5. B. M. Bradford, D. P. Sester, D. A. Hume, N. A. Mabbott,
Immunobiology 216, 1228-1237 (2011).
6. F. Geissmann, S. Gordon, D. A. Hume, A. M. Mowat,
G. ). Randolph, Nat. Rev. Immunol. 10, 453-460 (2010).
7. D. A. Hume, J. Leukoc. Biol. 89, 525-538 (2011).
8. M. C. Nussenzweig, R. M. Steinman, M. D. Witmer,
B. Gutchinov, Proc. Natl. Acad. Sci. U.S.A. 79, 161-165
(1982).
9. R. M. Steinman, Z. A. Cohn, J. Exp. Med. 137,
1142-1162 (1973).
10. L. Bar-On et al., Proc. Natl. Acad. Sci. U.S.A. 107,
14745-14750 (2010).
11. D. Hashimoto, ]. Miller, M. Merad, /mmunity 35,
323-335 (2011).
12. T. Hashimshony, F. Wagner, N. Sher, I. Yanai, Cell Rep. 2,
666673 (2012).
13. S. Islam et al., Nat. Protoc. 7, 813-828 (2012).
14. D. Ramskdld et al., Nat. Biotechnol. 30, 777-782 (2012).
15. Y. Sasagawa et al., Genome Biol. 14, R31 (2013).
16. A. K. Shalek et al., Nature 498, 236—240 (2013).
17. F. Tang, K. Lao, M. A. Surani, Nat. Methods 8, (Suppl),
$6-511 (2011).
18. A. R. Wu et al., Nat. Methods 11, 41-46 (2014).
19. Q. Deng, D. Ramskdld, B. Reinius, R. Sandberg, Science
343, 193-196 (2014).
20. S. Islam et al., Nat. Methods, published online
22 December 2013 (10.1038/nmeth.2772).
21. Materials and methods are available as supplementary
materials on Science Online.
22. |. Amit et al., Science 326, 257-263 (2009).

Acknowledgments: Research was supported by the European
Research Council and Israel Science Foundation (1782/11,
1050/12) grants to I.A. and A.T. RNA-seq data are deposited in
Gene Expression Omnibus, accession no. GSE54006.

Supplementary Materials
www.sciencemag.org/content/343/6172/776/suppl/DC1
Materials and Methods

Figs. S1 to S17

Tables S7 to S9

References (23-25)

Tables S1 to S6

25 October 2013; accepted 22 January 2014
10.1126/science. 1247651

14 FEBRUARY 2014

779



Massively Parallel Single-Cell RNA-Seq for Marker-Free
Decomposition of Tissues into Cell Types

Diego Adhemar Jaitin et al.

Science 343, 776 (2014);

AVAAAS DOI: 10.1126/science.1247651

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your
colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by
following the guidelines here.

The following resources related to this article are available online at
www.sciencemag.org (this information is current as of May 18, 2015 ):

Updated information and services, including high-resolution figures, can be found in the online
version of this article at:
http://www.sciencemag.org/content/343/6172/776.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2014/02/12/343.6172.776.DC1.html

This article cites 24 articles, 8 of which can be accessed free:
http://www.sciencemag.org/content/343/6172/776.full. html#ref-list-1

This article has been cited by 21 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/343/6172/776.full.html#related-urls

This article appears in the following subject collections:
Genetics
http://www.sciencemag.org/cgi/collection/genetics

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the
American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright
2014 by the American Association for the Advancement of Science; all rights reserved. The title Science is a

registered trademark of AAAS.

Downloaded from www.sciencemag.org on May 18, 2015


http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/343/6172/776.full.html
http://www.sciencemag.org/content/suppl/2014/02/12/343.6172.776.DC1.html 
http://www.sciencemag.org/content/343/6172/776.full.html#ref-list-1
http://www.sciencemag.org/content/343/6172/776.full.html#related-urls
http://www.sciencemag.org/cgi/collection/genetics
http://www.sciencemag.org/

