
BCB410
Exercise questions for “Dynamic Programming and Pairwise Sequence Alignment” 

Zahra Ebrahim zadeh
If you have any questions on these exercises, please contact me: z.ebrahimzadeh@utoronto.ca

1) Given an mRNA sequence= SQPTQYAWKW and the original sequence = 
DELSQPTQYAWKWVRETQ from the organism genome. We are interested in finding mRNA 
corresponding location in the organism genome . 

a) Which alignment should we perform? 
b) Use the appropriate algorithm for this alignment. Fill in the DP matrix and calculate the 

optimal alignment score. Obtain the optimal alignment by traceback the matrix.

2) In the class we saw to recover optimal alignment, arrows indicating optimal forward path are 
placed in matrix. Show how optimal alignment can be efficiently retrieved without these 
arrows.

3) In traceback of a pairwise sequence alignment, several optimal alignments can be obtained. 
Give a DP algorithm to compute the number of distinct co-optimal alignments.

4) Given two sequences  with aligning score value of match = 2, mismatch = -1, gap = -1, which 
alignment score is  larger: their local similarity or their global similarity? How does their semi-
global similarity compare with the other two values?
Hint: Consider the scoring value in any alignment that two sequences would return.
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5) Given the two following alignments:

Alignment 1:

Seq1       AGTGTGAAGGTCCCGGCTAAT---CG

Seq2       A-TGCG--GCTAATGGC-AATATACG

Alignment 2:

Seq1       AGTGTGAAGGTCCCGGCTAAT---------CG
Seq2       A---TG-------CGGCTAATGGCAATATACG

a) The two alignments above were created using the same gap opening penalty, but different 
gap extension penalties. What can you say about the relative values of the gap extension 
penalties in the alignments above?

b) Describe the alignment you would expect if the gap opening penalty was infinity. What 
kind of alignment would you expect if the gap start penalty and gap extension penalty 
were both zero?

6) In the class we saw global alignment using Needleman-Wunsch algorithm for linear gap 
model takes O(nm) time and O(nm) space.

a)  Write an algorithm to compute global alignment in linear time. How big memory space 
does this algorithm use?
b) Write a DP algorithm to compute global alignment in linear space. What is the runtime of 
this algorithm?

7) As indicated in the class NW algorithm for general gap model (slide ) takes O(mn2) where 
n>m.

Modify this algorithm so that it runs in O(nm) and O(nm) space.
Hint: use more than one matrix.
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8) A palindromic sequence is a nucleic acid sequence that is  the same whether read 5' to 3' on 
one strand or 5' to 3' on the complementary strand. 

a) Write a DP algorithm to find the longest palindromic subsequence. Give the recurrence.
b) Analysis the runtime and space. Justify your answer.

9) Bacterial DNA is usually circular.

a) Write an efficient DP algorithm for global alignment of two circular sequences  in less than 
cubic time. 
b) Prove the correctness of your algorithm and justify the runtime.
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BCB410 - Zahra Ebrahim zadeh

Exercises with solution - Dynamic Programming and Pairwise Sequence Alignment

If you have any questions on these exercises, please contact me: z.ebrahimzadeh@utoronto.ca

1) In the class we saw global alignment using Needleman-Wunsch algorithm for linear gap model 
takes O(nm) time and O(nm) space.

We may align very large sequences, where the algorithm using polynomial-space are not 
efficient. Modify a known alignment DP algorithms to compute optimal global alignment score 
in linear space i.e. O(min(m,n)) where m, n are length of two sequences. Justify the runtime.

Answer: We should note that the calculation of any entry of the matrix we saw in class 
only requires knowledge of the results from the current and previous rows i.e for any 
entry, its  score obtained considering 3 neighbor entries as: diagonal entry, top entry, and 
left entry.
Therefore, we calculate our optimal values using a 2-dimentional array of 2x(min(m,n)). 
Then two rows would be NW0,j and NW1,j. To fill the matrix, we first initialize row0 
according to the Needleman-Wunsch Algorithm base case. Then we fill the row1 using 

the recurrence: NW1, j = max
NW0, j−1 + s(vi ,wj )
NW0, j + g
NW1, j−1 + g

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

Once all the entries of the NW1,j row are calculated, the value of each matrix entries of 
NW1,j is transferred to NW0,j. We keep computing the optimal values, at each step row1 
is equivalent of the ith row in the full matrix.

In this method, as we store two rows of the matrix, the memory requirement is  twice the 
length of the shorter sequence. Hence, that is O(min(m,n)).

2) As indicated in the class NW algorithm for general gap model (slide 22) takes O(mn2) where 
n>m. Modify this algorithm for affine gap model, so that it runs in O(nm) and O(nm) space. 
Hint: you can use more than one matrix.

Answer: The NW algorithm we saw was: NWi, j = max
NWi−1, j−1 + s(vi ,wj )
[NWi−ngap1 , j

+ g(ngap1)]1≤ngap1 ≤i
[NWi, j−ngap2

+ g(ngap2 )]1≤ngap2≤ j

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

We need two matrices for the last two statement in order to reduce the runtime. 
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Hence, lets  Ri, j = max{NWi−ngap1 , j
+ g(ngap1)}1≤ngap1 ≤i   (I) and that is equal to:

Ri, j = max
NWi−1, j + g(1)
[NWi−ngap1 , j

+ g(ngap1)]2≤ngap1 ≤i

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Ri, j = max
NWi−1, j + g(1)
[NWi−ngap1 −1, j

+ g(ngap1 +1)]1≤ngap1 ≤i−1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Ri, j = max
NWi−1, j −1
[NWi−ngap1 −1, j

+ g(ngap1) − (gap_ extension_ penalty)]1≤ngap1 ≤i−1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Ri, j = max
NWi−1, j − (gap_opening_ penalty)
[NWi−ngap1 −1, j

+ g(ngap1)]1≤ngap1 ≤i−1 − (gap_ extention_ penalty)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Please note that here, we assume absolute values of gap opening penalty and gap 
extension penalty. Let gap_opening_penalty = O and gap_extension_penalty = E. Then 

from (I) substituting i-1 for i: Ri−1, j = max{NWi−ngap1 −1, j
+ g(ngap1)}1≤ngap1 ≤i−1 , the 

above formula can be written as:

Ri, j = max
NWi−1, j − (O)
Ri−1, j − (E)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 This is  recursive definition for aligning residues in sequence 

V with gaps in W.

The other case, aligning residues in sequence W with gaps in V, can be derived in 
similar way. Let other matrix be Li,j , then

 Ci, j = max
NWi, j−1 −O
Ci, j−1 − E
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Therefore,

NWi, j = max
NWi−1, j−1 + s(vi ,wj )
[NWi−ngap1 , j

+ g(ngap1)]1≤ngap1 ≤i
[NWi, j−ngap2

+ g(ngap2 )]1≤ngap2≤ j

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

                NWi, j = max
NWi−1, j−1 + s(vi ,wj )
Ri, j
Ci, j

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

                                          

           

3) A palindromic sequence is a nucleic acid sequence that is the same whether read 5' to 3' on one 
strand or 5' to 3' on the complementary strand. Write a DP algorithm to find the longest 
palindromic subsequence. Give the recurrence and justify your answer.

Answer: We know that DNA is  double stranded and a nucleic acid in one strand is 
complement of its opposite nucleic acid in other strand. Therefore, in order to determine 
palindromic sequence it is  sufficient to consider one strand and we should note that 
palindromic sequence has to have an even length >= 2. Odd length subsequence 
cannot form palindromic DNA. 
Is  A  palindrome? What about ACGCT? These are not palindrome.
     T                                          TGCGA

Let P be the nxn matrix such that P[i,j] store the length of palindromic subsequence 
vi,...,vj of V, where |V|=n. Then we can drive the following recurrence:
  

P[i, j] =
P[i +1, j −1]+ 2
−∞
0

⎧
⎨
⎪

⎩⎪
                                                    

                  
Using similar strategy as in traceback of global algorithm we can indicate the path to 
palindromic subsequences. After computing the matrix P, starting from the largest value 
in the matrix we get two initial bases of the longest palindrome and following the path we 
can then insert the next palindromic subsequence between the two outer bases of 
largest palindrome. We continue retrieving the palindrome in this way recursively. 
The runtime is O(n2), as each entry of the matrix takes constant time to be computed.

4) Bacterial DNA is usually circular. Explain how we can use DP method for finding global 
alignment of two circular sequences V and W of length n and m respectively, for less than 
O(n2m2) runtime.

Answer: Since the sequences are circular and we don’t know where the beginning of 
either sequences is, we need to note that there are n circular shifts of V, and m circular 
shifts of W. Thus there are nm circular shifts. To determine an optimal alignment, we can 
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fix a start point on the longer sequence, i.e max(m,n), and perform standard global 
alignment for min(m,n) times, i.e for all shifts of smaller sequence. 
The run time is O(nm.min(m,n)) since we would have min(m,n) matrices of size nxm and 
calculation of each entry would take O(1).

(An alternative way is constructing a 3-dimensional array of size n x m x min(m,n) and 
doing the global alignment for this matrix. We need to add a 3rd dimension [1...min(n,m)] 
to recurrence of global algorithm we saw in class. The runtime is 
O(nm.min(m,n).)

5) Consider the following two-player game: given an even number of amino acids with their 
molecular weight from a protein sequence, i.e. {a(1),...,a(n)}, where a(i) give the molecular weight 
of amino acid i. The game proceeds as follows: a player chooses to delete (and keep) a amino acid 
from either end of the sequence, and then it is the other player’s turn to do the same. Play 
continues until all denominations have been removed.  

Show how you can determine the maximum molecular weight of amino acids you are 
guaranteed to win if you take the first turn. Justify your answer.
Hint: Derive a recurrence M[i,j], for i <= j, indicating the maximum possible molecular 
weight you are guaranteed to win using amino acids {a(i),...,a(j)}.

Answer: Let M[i,i] for i<=j, be the maximum possible sum molecular weight we are 
guaranteed to win using remaining amino acids from i to j, where it is our turn to take. 
For M[i,j], there are two cases: we pick amino acid i, obtaining a(i), or we pick amino acid 
j, obtaining a(j) molecular weight.
Case 1: We pick a(i):

Subcase 1a. our opponent picks a(j). Then {a(i+1),...,a(j-1)} amino acids left.
Subcase 1b. our opponent picks a(i+1). Then {a(i+2),...a(j)} amino acids left.
Since the opponent is as smart as us, he would have chosen the choice that yields 
the minimum molecular weight sum to us. The guaranteed molecular weight in 
remaining amino acids would be the smallest of subcases. i.e. min{ M[i+1,j-1], M[i
+2,j] }. Thus maximum amount we can get when we pick a(i) is :
Case1 = a(i) + min{ M[i+1,j-1],M[i+2,j] }

Case 2: We pick a(j):
Subcase 2a. our opponent picks a(i). Then {a(i+1),...,a(j-1)} amino acids left.
Subcase 2b. our opponent picks a(j-1). Then {a(i),...,a(j-2)} amino acids left.
The guaranteed molecular weight in remaining amino acids would be the smallest 
of the subcases. i.e. min{ M[i+1,j-1], M[i,j-2] }
Thus maximum amount we can get when we picked a(j) is :
Case2 = a(j) + min{M[i+1,j-1],M[i,j-2]}

Therefore, to maximize our profit, we choose max{ picking a(i)=Case1, picking a(j)
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=Case2 }. Then:

M[i,j] = max
a(i) +min{M[i +1, j −1],M[i + 2, j]
a( j) +min{M[i +1, j −1],M[i, j − 2]

⎧
⎨
⎩

⎫
⎬
⎭

6) Sometimes we are interested to find longest common subsequence (LCS) of two sequences, 
where the residues in LCS  appear in both sequences in the same order but not necessarily 
c o n s e c u t i v e l y. F o r e x a m p l e i s V = C G G T C G A G T G C G C G G A A G C G C a n d 
W=GTCGTTCGGAATGCTT, then LCS=GTCGTCGGAAGC. Write an efficient algorithm to 
find the longest subsequence common to two sequences.

a) Give an optimal substructure of an LCS and prove its correctness.

Answer: First we characterize the optimal substructure of an LCS as follows:
Let V = (v1,v2,...,vn) and W= (w1,w2,...,wm) be two sequences, and Z = 
(z1,z2,..,zk) be any longest common subsequence of V and W. We can observe 
that an LCS of two sequences contains within it an LCS of prefixes  of the two 
sequences.Then: 

1) If vn = wm, then zk = vn =wm and Zk-1 is an LCS of Vn-1 and Wn-1.
2) If vn ≠ wm, then zk ≠  vn  that means Z is an LCS of Vn-1 and W.
3) If vn ≠ wm, then zk ≠  wm  that means Z is an LCS of V and Wn-1.

Proof by contradiction: Assume Z is LCS. For case 1, if zk ≠  vn , then we could 
append vn = wm to Z to obtain longer common subsequence of length k+1. This 
is  contradicting  that Z is  LCS of V and W. Thus zk = vn =wm. The prefix Zk-1 is  the 
LCS for Vn-1 and Wn-1. Suppose there exist a common subsequence X of Vn-1 
and Wn-1  with length greater than k-1, appending vn =wm to X yields a common 
subsequence with length greater than k, that is contradicting Z is LCS. For case 
2, if there were a common subsequence X of Vn-1 and W with length greater 
than k, then X would be a LCS of Vn and W, that is contradicting that Z is  an 
LCS of V and W. Case 3 has similar argument as 2.

b) Give the recurrence and justify your answer.

Answer: Construct the matrix L of size n+1 x m+1. Let L[i,j] be the length of an LCS of 
subsequence Vi and Wj. In characterized substructure of an LCS, we can see that for 
LCS we would have two major cases for when vi = wi and vi ≠  wj. For vi ≠  wj  we have 
two subproblems of finding LCS for Vn-1 and W and LCS for V and Wn-1. 

Then: L[i, j] =
L[i −1, j −1]+1
max{L[i, j −1],L[i −1, j]}
0

⎧
⎨
⎪

⎩⎪

5

if vi = wj and i, j > 0 

if  vi ≠  wj and i,j >0 

if i=0 or j=0



c) Give the pseudocode of the algorithm and explain how to retrieve the LCS sequence from 
your algorithm.

Answer: We fill the matrix L in row major order, we also store paths we obtain the 
optimal values in a separate matrix P of size nxm. 
Pseudocode will be:
LCS(V,W):
    for i=1 to |V|
         L[i,0]=0
    for j=0 to |W|
         L[0,j]=0
    for i =1 to |V|
          for j=1 to |W|
               if vi == wi

                                 L[i,j] = L[i-1,j-1]+1
                        P[i,j] = 0        // This is when the value of L[i,j[ comes from diagonal entry.                

  else if L[i-1,j] >= L[i,j-1]
L[i,j] = L[i-1, j]
P[i,j] = 1     //This is when the value of L[i,j] comes from the top entry.

  else: L[i,j] = L[i, j-1]
  P[i,j] = -1     //This is when the value of L[i,j] comes from the left entry.

We obtain LCS sequence from end of sequences, i.e starting P[n,m]. The pseudocode 
for getting LCS:

Retrieve_LCS (P, V, i, j):
lcs_seq = “”   

     if i = 0 or j = 0 return
     if P[i,j] == 0:
          Retrieve_LCS(P,V, i-1, j-1)
          lcs_seq = vi + lcs_seq
     else if P[i,j] == 1:
          Retrieve_LCS(P, V, i-1, j)
     else: Retrieve_LCS(P, V, i, j-1)
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d) What is the runtime of your algorithm. Justify your answer.

Answer: The LCS(V,W) takes nm steps as we have the i and j for loops. and 
Retrieve_LCS takes O(n+m) time as the value of i and/or j is decreases in each 
recursive call. Hence the algorithm will terminates once i or j become 0.
Thus the overall runtime is O(nm), since O(nm)+O(n+m) is O(nm).

7) Given two sequences with aligning score value of match = 2, mismatch = -1, gap = -1, which 
alignment score is larger: their local similarity or their global similarity? How does their semi-
global similarity compare with the other two values?

Answer: With this scoring where value(gap) ≤  value(mismatch) < value(match), we have 
value of optimal_Global ≤  optimal_Semiglobal ≤optimal_Local. 
A semiglobal alignment will have at least the global score because it could find the same 
alignment but would not be penalized for gaps on the sides of sequences. Similarly, local 
alignment score is at least as semi-global score since the optimal score of the alignment 
is  not reduced by any net-negative end of the alignment and pairing of residues that may 
reduce its score.
In other words, with this scoring every global alignment is a semiglobal alignment and 
every semiglobal alignment is a local alignment.
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