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MATERIALS AND METHODS 
 
Isolation of splenic CD11c+ cell suspension 
 
Spleens were extracted from C57BL/6J female mice (8 to 12 weeks old), dissociated into 
single splenocytes with a gentleMACS Dissociator (Miltenyi Biotec, Germany) and 
incubated 5 min in red blood cell lysis solution (Sigma). Cells were then washed and 
resuspended in MACS buffer (0.5% BSA and 2 mM EDTA in phosphate-buffered 
saline), and filtered through a 70-µm strainer. A CD11c+ fraction was obtained through 
two rounds (double-enrichment) of separation with monoclonal anti-mouse CD11c 
antibodies coupled to magnetic beads using a MACS cell separator system (Miltenyi 
Biotec). 
 
 
Single cell capture 
 
Single cells were sorted into cell capture plates, containing 2 µl of cell lysis solution in 
384-well PCR plates. Capture plates were prepared with a Bravo automated liquid 
handling platform (Agilent). Sorting was performed using a FACSAria III cell sorter (BD 
Biosciences) and gating in SSC-A vs. FSC-A to collect live cells, and then in FSC-W vs. 
FSC-A to sort only singlets. Two empty wells were kept in each 384-well plate, as a no-
cell control during data analysis. Immediately after sorting, plates were spun down to 
ensure cell immersion into the lysis solution, snap frozen on dry ice and stored at -80°C 
until further processing. 
 
 
MARS-Seq: 384-well plates automation setup and library construction 
 
Automated single-cell RNA-Seq library production was performed on the Bravo robot 
station using 384-filtered tip (Axygen, catalog # 302-82-101). The Bravo Single-cell 
RNA-Seq scripts are available upon request. The samples were processed as described in 
the following steps: 
 
1. 384-well cell-capture plate preparation protocol 
 
Preparation of 384-well single-cell capture plates included the addition of 2 µl of a 
hypotonic cell lysis solution (a robust splenic lysis solution compatible with a cell direct 
RT reaction) supplemented with RNase inhibitor and a barcoded RT primer. The RT 
primer included a T7 RNA polymerase promoter, a partial Illumina paired-end primer 
sequence, a cell barcode followed by a unique molecular identifier (23), and an anchored 
polydT (see table S7): 
 
1. 96-well master mix plates contain lysis solution (triton 0.2% in molecular biology-
grade water) supplemented with 0.4 U/µl RNase inhibitor and 400 nM of indexed RT 
primer from group 1 (1-96 barcodes) or group 2 (97-192 barcodes). To prepare 12 384-
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well plates, 57.5 µl lysis buffer were mixed with 5 µl of 5 µM indexed RT primer stock 
per well. 
2. The cell capture plate preparation script mixes group 1 master mix plate (barcodes 1-
96), aspirates 2 µl from it and dispenses it in destination 384-well plate-1 in two adjacent 
positions (see below). Then, 2 µl are again aspirated from master mix plate 1-96 to be 
dispensed in the other destination 384-well plates. If more than four cell capture plates 
are needed, filled destination plates should be replaced with new plates. Once all desired 
plates are added with group 1 master mix, tips are replaced and the cell capture plate 
preparation script mixes group 2 master plate (barcode 97-192), aspirates 2 µl from it and 
dispenses it in the destination 384-well plates. The entire process takes about 30 min per 
12 plates. A single cell is then sorted into each well as described above. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Barcoding and Reverse Transcription (RT) reaction 
 
1. Pre-incubation: To open secondary RNA structures and allow annealing of the RT 
primer, the 384-well cell capture plate was incubated at 72˚C for 3 min and immediately 
transferred to 384-well Inheco thermal block integrated to Bravo and set at 4˚C (see 
position 4 at Bravo RT protocol scheme below). 
 
2. An RT reaction mix  (10 mM DTT, 4 mM dNTP, 2.5 U/µl Superscript III RT enzyme 
in 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, ERCC RNA Spike-In mix) was 
prepared as a master mix for 440 reactions (sufficient for 384 wells and the required void 
volume for automatic pipetting), dispensed into two 8-well strips, 54 µl per well, and then 
placed in a 96-well Inheco thermal block set at 4˚C (position 6 in Bravo RT scheme 
below). The RT reaction mix was supplemented with ERCC (24) RNA Spike-In mix 

Master mix 
plate 
1-96 

Master mix 
plate 

97-192 

384 
filtered tip 

box 

Empty 
384 tip 

box 

Destination 
384 plate 1 

Destination 
384 plate 3 

Destination 
384 plate 4 

Destination 
384 plate 2 

Cell Capture plates preparation 



 
 

4 
 

(Ambion), containing polyadenylated RNA molecules of known length and 
concentration, at a final 1:40x107 dilution per cell, to yield ~ 5% of the single-cell mRNA 
content. 
3. According to the RT reaction mix addition script, 2 µl of RT reaction mix were added 
into each well of the 384-well plate (described in step 1) and the reaction was mixed one 
time. Tips were replaced and the process repeated to all wells.  
4. The 384-well plate was then spun down and moved into a 384 cycler (Eppendorf) for 
the RT program: 2 min at 42˚C, 50 min at 50˚C, 5 min at 85˚C. The entire process takes 
23 min per 384-well plate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Pooling of barcoded 384 single cell samples 
 
1. Tips pre-wash and blocking: 50 µl of triton 0.2% containing 40 pg/µl of yeast tRNA 
were dispensed in each well of row D of a clean 96-well plate (destination plate for 
pooling). 
2. The 4 µl of barcoded cDNA sample from the 384-well plate (placed on the 384-well 
Inheco block set at 4˚C) were pooled into two rows (24 wells) of the 96-well destination 
plate (placed on the 96-well Inheco block set at 4˚C). The entire process takes 9 min per 
plate. 
3. To remove RT primer leftovers, 1 µl of exonuclease I (NEB) was added into each of 
the 24 wells and the plate incubated at 37˚C for 30 min and then 10 min at 80˚C for 
exonuclease I inactivation. 
4. A second and final pooling was achieved through sample cleanup, consisting of 
addition of 1.2x volumes of SPRI magnetic beads into each well (low SPRI to sample 
ratio further removes primer traces) to bind the cDNA, and the contents of each row 
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(containing 192 barcoded single cells) are pooled into one 1.7 mL DNA low-bind 
Eppendorf tube, washed and eluted in 17 µl 10 mM Tris HCl pH 7.5. These two groups 
of 192 samples will be pooled together (along with cells from three other 384-well plates) 
after addition of a pool barcode (plate level tag; see S8) in the RNA-DNA ligation step 
(see below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Second strand synthesis and IVT amplification 
 
1. The pooled cDNA was converted to double-stranded DNA with a second strand 
synthesis kit (NEB) in a 20 µl reaction, incubating for 2.5 h at 16˚C. 
2. The product was purified with 1.4x volumes of SPRI beads, eluted in 8 µl and in-vitro 
transcribed (with the beads) at 37˚C overnight for linear amplification using the T7 High 
Yield RNA polymerase IVT kit (NEB). 
3. Following IVT, the DNA template was removed with Turbo DNase I (Ambion) 15 min 
at 37˚C and the amplified RNA (aRNA) purified with 1.2x volumes of SPRI beads. 
 
5. Single-cell library preparation for high-throughput sequencing 
 
1. The aRNA was chemically fragmented into short molecules (median size ~200 
nucleotides) by incubating 3 min at 70˚C in Zn2+ RNA fragmentation solution (Ambion) 
and purified with two volumes of SPRI beads.  
2. Next, a partial Illumina Read1 sequencing adapter that includes a pool barcode (see 
table S8) was single strand ligated (ligation adapter sequence is in table S7) to the 
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fragmented RNA using a T4 RNA ligase I (New England Biolabs). The aRNA (5 µl) was 
preincubated 3 min at 70˚C with 1 µl of 100 µM ligation adapter; then, 14 µl of a mix 
containing 9.5% DMSO, 1 mM ATP, 20% PEG8000 and 1 U/µl T4 ligase in 50 mM Tris 
HCl pH7.5, 10 mM MgCl2 and 1mM DTT was added. The reaction was incubated at 
22˚C for 2 h. 
3. The ligated product was reverse transcribed using Affinity Script RT enzyme (Agilent; 
reaction mix contains Affinity Script RT buffer, 10 mM DTT, 4 mM dNTP, 2.5 U/µl RT 
enzyme) and a primer complementary to the ligated adapter (see table S7). The reaction 
was incubated for 2 min at 42˚C, 45 min at 50˚C, 5 min at 85˚C.  The cDNA was purified 
with 1.5x volumes of SPRI beads. 
4. The library was completed and amplified through a nested PCR reaction with 0.5 µM 
of each primer and PCR ready mix (Kapa Biosystems). The forward primer contains the 
Illumina P5-Read1 sequences and the reverse primer contains the P7-Read2 sequences 
(see table S7). The amplified pooled single-cell library was purified with 0.7x volumes of 
SPRI beads to remove primer leftovers. Library Concentration is measured with a Qubit 
fluorometer (Life Technologies) and mean molecule size is determined with a 2200 
TapeStation instrument (Agilent Technologies). MARS-Seq libraries were paired-end 
sequenced using an Illumina HiSeq 2500. We sequenced from 192 to 1,536 cells per lane. 
 
 
Single cell sorting efficiency assessment 
 
To test single cell sorting efficiency we used two parallel approaches. First, we directly 
sorted single cells and measured cell frequency using a semi-automated image analysis 
software (fig. S3). Second, during single-cell sorting we designated one well to remain 
empty to be used for no-cell background signal during analysis.  
For image analysis, cells were stained with carboxyfluorescein succinimidyl ester (CFSE; 
eBioscience, San Diego, CA) and sorted into two 96-well plates and scanned using a 
fluorescence microscope. Briefly, HEK 293T cells from an exponential culture were 
harvested and stained with 2.5 µM CFSE in PBS for 10 min, then washed three times 
with seven volumes of complete medium (10% serum; no phenol red). After sorting 
single cells into wells containing 100 µl of culture medium, the plates were spun down 
and scanned using a Ti-eclipse microscope (Nikon Instruments, Melville, NY) equipped 
with an automated stage, an incubator, and a closed chamber that allows for CO2 flow 
over the 96-well plate. For cell detection calibration, we sorted 10 or 100 cells into the 
wells of column 1 of each plate. Cells were imaged using a 10X objective and monitored 
using bright field illumination and fluorescence channel FITC. Pictures were collected 
using the NIS-elements software (Nikon Instruments). For quantitative analysis, images 
from the fluorescence channel were analyzed using a semi-automated ImageJ (National 
Institutes of Health, Bethesda, MD; available at http://rsb.info.nih.gov/ij/index.html) 
based custom code. Wells that were not properly scanned by the microscope were 
excluded from the analysis. 

We observed that 2.3% of wells contained no cells, 2.3% of wells contained 2 
cells, and more than 95% with one single cell. We did not detect any well with more than 
two cells. Of note, in all wells with two cells, these cells were always next to each other, 
raising the possibility that they originated from one dividing cell that continued to divide 
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after having been sorted into culture medium. Since in the single-cell RNA-Seq process 
cells are sorted into a hypotonic solution, these numbers probably represent an 
overestimation of the true doublets we have in our data.  
 
 
Isolation of DC subpopulations by Fluorescence-activated cell sorting 
 
For sorting DC subpopulations, MACS-based CD11c enriched mouse splenocytes were 
stained and sorted on a FACSAria III cell sorter (BD Biosciences) in two rounds, using 
fluorophore-conjugated antibodies (BioLegend). First, cells were stained with FITC-
conjugated anti-CD8a antibodies (clone 53-6.7) and sorted into CD8a positive and 
negative fractions. The CD8+ fraction was then stained with APC anti-CD11c (clone 
N418), Pacific Blue anti-MHCII (clone AF6-120.1), Alexa 700 anti-CD4 (clone GK1.5), 
PE-Cy7 anti-CD86 (clone GL-1), and PE-conjugated anti-PDCA1. The CD8- fraction 
was stained for CD11c, MHCII, and with PerCP-Cy5.5 anti-CD11b, PE-Cy7 anti-CD4, 
FITC anti-PDCA1, and PE-conjugated anti-ESAM (clone 1G8). The DC cells were 
identified as: cDC CD8+ (CD11chigh MHCII+ CD8ahigh CD86+); cDC CD86- (CD11chigh 
MHCII+ CD8ainter CD86-); CD8+ pDC (CD11cinter CD8a+ PDCA1+); cDC CD4+ ESAM+ 
(CD8- MHCII+ CB11b+ CD4+ ESAM+); CD8- pDC (CD11cinter CD8a- PDCA1+). For 
single-cell sequencing, single cells were sorted into 96/384 well single-cell capture plates 
as described above. 
 
 
Isolation of hematopoietic cell types 
 
To obtain B cells, NK cells and monocytes, a splenocyte suspension was stained with, 
PE-Cy7-conjugated CD19, eFluor 450-conjugated NK-1.1, PerCP Cy5.5 Gr1, FITC 
TCR-β, APC CD11b and PE B220 (CD45R). B220+ and B220neg (germinal center) B 
cells were collected by gating for CD19+ (TCR-βneg) cells and then by B220 against the 
CD19 marker. NK single cells were collected from the CD19neg/TCR-βneg events by 
gating for NK-1.1 positive events in NK-1.1 vs. Gr1. Finally single monocytes were 
collected by gating for Gr1+ CD11b+ events. The B cell and pDC content in the CD11c-
enriched sample was estimated by staining with PE-Cy7 CD19, PE PDCA-1 (CD317, 
Bst2) and APC CD11c and gating in CD19 vs. CD11c and PDCA-1 vs. CD11c, 
respectively. For single-cell sequencing, single cells were sorted into 96/384-well single-
cell capture plates as described above. 
 
 
Single-cell Real Time PCR 
 
Single B cells, NK cells and monocytes were sorted by FACS into individual wells of a 
96-well plate containing 5 µl of 0.2% Triton X-100 and RNase inhibitor as described 
above. RT pre-amplification was performed on 24 single cells of each type similarly to 
Dalerba, et al. (25). After thawing, each well was supplemented with 0.1 µl of 
SuperScript III RT/Platinum Taq (Invitrogen), 6 µl of 2x reaction mix and a mixture of 
primer pairs for Cd37 (B cell marker), Ly6A (B cell marker), NKg7 (NK marker) and 
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Ccl4 (NK cell marker) genes (100 nM final concentration; see table S9 for sequences). 
Single-cell mRNA was directly reverse transcribed into cDNA (50°C for 15 min, 95°C 
for 2 min), preamplified for 14 cycles (each cycle 95°C for 15 sec, 60°C for 1 min) and 
cooled at 4°C for 15 min. Samples were then diluted 1:40 with 10 mM Tris-HCl, pH 8. 
Real- Time PCR analysis was performed for each gene separately with the same set of 
primers used in the RT pre-amplification stage (400 nM final concentration) using SYBR 
green Master (Roche) on a LightCycler 480 System instrument (Roche). Quantification 
was performed as relative to the average of all cells for a given gene (n = 72), using the 
formula 2(Ct – mean (Ct)), where Ct is the mean qPCR cycle threshold signal of two 
replicate qPCR reactions per cell. 
 
 
Structure of valid library products and their expected distributions 
 
Following the final amplification, single-cell RNA-seq sequenced product information 
was structured in two parts. At one end (Read 1) we read a 56-57 bp sequence that 
included a 6 bp pool barcode prefix (table S8) followed by a sequence expected to map 
within a polyadenylated transcript. For valid library products, this fragment is expected to 
map at some typical (short) offset from the gene’s 3’ UTR, depending on the randomized 
fragmentation of the IVT-amplified RNA (library construction protocol; see above). The 
other sequence end (Read 2) contains a 10-14 bp tag that was engineered to include a 6 
bp cell-specific (or well-specific) label, followed by a 4-8 bp random molecular tag 
(RMT). 
 
Importantly: 
1. Groups of reads that share a pool-barcode, cellular tag and RMT were assumed to 
represent the same initial RNA molecule and were counted only once. Such reads 
typically map to several positions around the 3’UTR of the gene, since multiple IVT 
products sharing the same tag are fragmented at different offsets. 
2. Our pool barcodes and cell-specific labels are designed to be distinct enough (in terms 
of edit distance) so to reduce the probability of inter-cell contamination through 
sequencing error. RMTs, on the other hand, are distributed randomly (and unevenly) over 
all possible DNA k-mers, making sequencing errors difficult to detect or correct (see 
below). 
3. When deep-sequencing a single-cell library, we expect a variable number of reads to 
cover each RMT. The sequencing depth per molecule mostly depends on its ligation yield 
and PCR efficiency, which are expected to be similar between molecules that map to the 
same genomic position. We therefore expect molecules representing the same gene and 
same 3’ UTR offset to be covered relatively uniformly and can use such uniformity 
assumption for normalization. 
4. RMTs mark unique molecules with high probability. However the probability of 
observing two distinct molecules labeled by the same RMT is not zero, especially for 
genes that are highly expressed. RMTs of 8bp reduce this effect considerably, but our 
current dataset include almost only experiments using 4bp RMTs. 
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Initial filtering, tag extraction and mRNA sequence mapping 
 
Given raw sequenced reads, we first extract pool barcode, cell-specific tags and RMTs, 
and eliminate reads with ambiguous plate/cell-specific tags or RMT sequence with low 
quality (Phred<27). We filtered potentially bacterially originated molecules by mapping 
R1 reads to e-coli using bowtie with parameters “-M 1 -t --best --chunkmbs 64 –strata”. 
Following this initial filtering, we mapped R1 reads (trimmed of pool barcode) to the 
mouse mm9 genome assembly combined with ERCC spike-in pseudo-assembly using the 
Bowtie program and the standard parameters “-m 1 -t --best --chunkmbs 64 –strata”.  
 
We define a set of transcription termination sites (TTS) based on the UCSC genome 
browser tables (mm9). Sequence reads mapping to a range of -1000 to +200 bp from a 
known TTS were considered for further analysis. This leaves out of the analysis less than 
20% of the sequenced products, likely representing non-classical genes, alternative 
3’UTRs, or spurious transcripts. Following this procedure, we generated a matrix 
containing the number of reads covering each of the RMTs in each of the observed 
mapping offsets for each cell and each gene. In ambiguous cases, when reads could be 
mapped by this procedure to multiple genes, we added a new gene-like record, defined as 
an underscore delimited list of all these genes. This matrix is then further processed to 
eliminate biases and errors. 
 
 
Filtering RMT sequencing errors 
 
As outlined above, sequencing errors introduced within random Molecular Tags (RMT) 
in our library products may undermine the tag-counting approach by creating spuriously 
identified molecules from real molecules. The number of such spurious RMTs is 
expected to scale linearly with the number of times each real RMT is sequenced. 
However, RMT sequencing errors are incapable of changing the offset of the mapped 
read relative to the TTS, and for each spurious RMT we expect to identify the source 
RMT as a highly covered tag sharing all the offsets of the spurious RMT (see examples in 
fig. S4). 
 
Based on these assumptions we implemented the following greedy filtering procedure, 
applied separately for the set of reads assigned to a certain gene/cell pair: 
* Sort the RMTs given their number of unique mapping offsets 
* Repeatedly selecting the RMT T observed at the fewest offsets, and testing if there 
exist a source RMT S, which is a) observed at all the offsets of T and b) has an edit 
distance of 1 from T. If such a source RMT exists, we eliminate T and its associated 
reads. 
 
While cell-barcodes are generally more robust to sequencing errors (given their design), 
we are identifying potential sequencing errors leading to cell-barcode mismatch using an 
approach similar to the one described above for RMTs by analyzing sets of molecules 
with the same RMT but different cell-barcodes and testing if the molecules within one 
cell are dominated by molecules in another cell with a poorly separated barcode.  
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Identifying and filtering skewed offsets and cross-cell contaminations 
 
Minimizing cross-cell contamination is important for any single-cell RNA-seq pipeline, 
but it becomes particularly critical when scaling up the protocol to a large number of cells 
or when applying it to a heterogeneous sample. Even relatively small levels of read to cell 
association errors can create a strong background and batch effect, increase spurious 
correlations between cells and reduce the capability of the approach to detect small 
coherent subpopulations. In theory, contamination is prevented by well-specific labeling, 
since the label is retained after pooling the tagged cDNA from all cells and the 
subsequent stages in the pipeline. Nevertheless, the extensive PCR amplification 
performed during library construction, and the existence of common (poly-dT) sequences 
at one end of the library products may give rise to unexpected scenarios of “tag-
switching” and read mislabeling. We therefore studied the complex distributions of reads 
over cells, genes, 3’UTR offsets, and RMTs in our data, aiming to identify and eliminate 
such potential noise factors. We discovered that there exist certain genomic positions that 
show statistically unexpected high frequency of low coverage molecules, which should 
be preferably filtered to minimize different biases. 
 
We implement a filtering of such problematic genomic positions in the following way. 
Given a set of reads that map onto a given gene, we first define the set of U triplets 
(c,o,T) with c being the cell, o being the genomic position and T being the RMT. We 
define the set of lonely triplets Ul as all (c,o,T) such that there does not exist o’ with 
(c,o’,T) in U other than o. The friendly triplets Uf are defined as U-Ul. We also define the 
sets U(o) as the triplets in a given position o. We can now compute how statistically 
unlikely is it to find many lonely triplets at a certain position by commuting the hyper-
geometric p-value: 
 
H(|U|, |Ul|, |U(o)|, intersect(|Ul|, U(o))) 
 
We perform Benjamini-Hochberg FDR correction on these p-values and exclude all 
triplets at offsets that obtain FDR<0.25. Further filtering is done using the same 
procedure, but defining the set of lonely triplets as those covered by only one read. 
 
We reasoned that genomic positions with significant hyper-geometric p-value are likely 
to be prone to barcode-switching effects, and case-by-case analysis confirmed that many 
of these are giving rise to batch-specific effects and are important to eliminate. Thus we 
recommend diagnosing and filtering such effects in single-cell RNA-seq studies. 
 
 
Down-sampling normalization 
 
Unlike any other gene expression datasets, single-cell mRNA profiles are inherently 
discrete, representing limited sampling from the initially limited pool of mRNA 
molecules within each cell. The number of trustworthy sampled molecules per cell is 
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variable and in order to compare profiles between cells, normalization is sometime 
desirable. Since we demonstrated our samples can be considered as sparse multinomial 
samples of mRNAs from each cell (e.g., Figure 1), the only appropriate normalization 
scheme is probabilistic: we define a target number of molecules N, and then sample from 
each cell having m>=N molecules precisely N molecules without replacement. Cells with 
m<N are not used for analysis at this level. This down-sampling approach ensures that all 
normalized cells should reflect the same family of multinomial distributions and can be 
robustly compared. We note that common practices in normalization of gene expression 
data (e.g. dividing by mean or median) must be avoided in single-cell RNA-seq datasets 
as they introduce severe coverage biases to the analysis. 
 
 
A multinomial mixture model for single-cell RNA-seq data 
 
A typical single-cell mRNA sample is defined by a vector nj (number of molecules 
observed for gene j), measured of a set of cells K. We assume this vector represents the 
results of sampling from a pool of few hundred thousands mRNAs within each cell, and 
that this original pool is different from cell to cell depending on the cell type or 
regulatory state. To model the sampling and cell-type component of the cell-to-cell 
variability (but not the cell state component) we introduce the following simple 
multinomial mixture model. The model probabilistically generates vectors of mRNA 
molecule counts over some space of genes G. We assume some number of classes K 
where each class defines a different multinomial distribution over the genes G, denoted 
pij=Pr(gj | class=i) (the probability of sampling gene j given that we are in mixture i). We 
also define for each class a mixture coefficient ai. Given a single-cell data vector nj we 
can compute the log probability of the data given each of the class by simple summation: 
log(Pr(nj | class i)) = Σj nj log(pij). Classification of a cell can now be done by comparing 
these log likelihoods (either choosing the maximum a posteriori class, or computing 
posterior probabilities). 
 
 
Inference of the mixture model parameters – non-iterative and iterative approaches 
 
We used the following simple, non-iterative approach to infer model parameters in highly 
heterogeneous, multi-type populations such as those studied in Figure 2 of the main text: 
 
Algorithm 1: 
1. We down-sample all data to N=600 
2. We compute the mean and variance for all genes in the dataset, and select the 100 
genes with the highest variance/mean ratio, considering only genes with mean expression 
within the range (1e-4, 0.014). 
3. We perform hierarchical clustering on the single-cell profiles, using the high variance 
genes.  
4. High correlation sub-trees are identified as seeds and sets of cells within each seed are 
extracted (denoted Ei). In Figure 2, Seed 7 was defined as union of several poorly 
separated seeds.  
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5. We pool together all molecules from cells in the seed Ei, generating a seed count 
vector m’i

j. Next we normalize this vector by down-sampling a fixed number of 
molecules Nseed without replacement to create mi

j. The multinomial parameters are now 
estimated as:  
 
pij = (mi

j +kreg)/(Nseed + kreg |G|) 
 
where  kreg is a regularization constant, |G|, is the number of genes. In the analysis 
described by Figure 2, Nseed=13800 and kreg was set to 1. 
 
We used this simple, non-iterative approach in our initial proof of concept experiments, 
in which clear cell type hierarchy is evident and require little computational fine-tuning 
to substantiate. We suggest this approach is relatively easy to understand and interpret, 
even by non-experts. Analysis of more challenging cell populations can be problematic 
using this scheme, and may require more sensitive methods that can identify structure in 
the data even when individual gene count vectors are very sparse. We approach this (Fig 
S17) using an EM-like approach consisting of a greedy initialization step followed by 
model update iterations: 
 
Algorithm 2: 
Preprocess: we used here all cells with a minimal number of molecules (N>400) and all 
genes with a minimal number of total molecules across all cells (N>40). We did not 
down-sample the data. 
1. We select a first seed cell randomly (denoted k1) 
2. We initialize a multinomial model from the new seed (as discussed above: pij = (nk1

j 
+kreg)/( (Σj nk1

j + kreg |G|), and compute the likelihood of all cells given the new model 
(Σj nj log(pij)), divided by the number of molecules (Σj nj) (since data is not down-
sampled normalized in this algorithm).  
3. We join the D cells with the highest normalized likelihood for the seed model (D=20) 
and reinitialize the seed model using data from these D cells. 
4. We now re-compute the likelihood of each cell to the current model (which include all 
seeds selected so far).  
5. We sample a new seed cell randomly from the set of cells whose likelihoods for the 
current model are within the bottom 20 percentiles. 
6. We continue with steps 2-5 until we have a model with K seeds. We are assuming 
uniform mixture coefficient throughout this process. 
7. Given the now complete model, we recomputed likelihoods of each cell to each seed 
8. We determine the maximum a posteriori (MAP) class for each cell (again assuming 
uniform mixture coefficients), and reinitialize the multinomial parameters of each class 
given the MAP cell-to-class assignment. 
9. We terminate iterations on 7-8 once the MAP assignment converges, or once a 
maximal number of iterations were performed.  
 
 
Circular a posteriori projection (CAP-) visualization 
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Given a mixture model (as constructed by algorithm 1 or algorithm 2), and a collection of 
(non down-sampled) single-cell profiles nj

k (specifying the number of molecules for gene 
j in cell k), we can compute the probability of the data for each class  
 
Uik =Pr(nk | class=i).  
 
We standardize these values given the total molecules in each sample in order to avoid 
introducing a coverage bias and normalize over all classes i to generate a corrected 
“posterior” probability: 
  
u’ik = exp((100/sumj(nj

k) * log(uik))/Zk  
 
Here Zk is a normalization factor computed so that the values for cell k sum up to 1. To 
visualize this high dimensional data we define a circular projection by assigning each 
class with a radial position ai on the unit circle, and assigning each cell with the 
coordinates: 
 
xk = sumi (u’ik cos(ai)), yk = sumj (u’ik sin(ai)). 
 
Radial positions are selected to minimize the inconsistencies for cells with ambiguous 
class posteriors u’ik. Specifically, pairs of classes with many cells mapping ambiguously 
to them should be positioned on proximal radial positions. To find an assignment of 
radial positions given these goals we construct a complete graph over the classes, and 
solve a traveling salesman problem over this graph with distances that represent the 
inverse number of cells with strong joint posterior probability for each pair of classes. 
Specifically we compute the joint posterior matrix by multiplying the matrices U’ (as 
defined above): 
 
V=U’U’T 
 
We normalize the product: 
 
v’ii’ = vii’*(1/suml(uil)*suml(ui’l))  
 
and generate a distance matrix: 
 
 dii’ = exp(-10v’ii’). 
 
Solving the TSP problem for small graphs such as ours is easy to achieve by exhaustive 
enumeration over all permutations or using one of the standard R packages for TSP. 
Given an optimal tour on the graph, we assign the radial positions proportionally give the 
distances on the tour. 
  
Pooling subpopulations for gene clustering 
Given a mixture model we classify cells based on their likelihood scores as described 
above, and associate each cell with its maximum a posteriory class. We then pool 
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together all cells associated with a class and generate a combined vector of RNA counts. 
We normalize this vector by simple scaling and regularization:  Ej= log(0.0001 + nj/Σj nj) 
(note that here we are not down-sampling the data anymore). We use the resulting gene 
expression estimation to cluster genes as shown in e.g., Figure 3 and Figure S12.  
  
 
Testing subpopulation differential expression and comparison to ImmGen 
 
To test differential gene expression between groups of single cells, we performed a 
standard chi-square-based proportion test on genes with overall mean expression 
generating at least 7 expected molecules per class. We corrected p-values for multiple 
testing using Benjamini Hochberg procedure (FDR<0.05). For genes with lower mean 
expression values, we used a fisher exact test for comparing each of the groups to the 
complement set. 

To compare our data to previously established microarray-based gene expression 
signatures from the ImmGen project, we quantile-normalized each microarray profile to 
the distribution of overall molecule counts on the pool of all Cd11c+ single-cell profiles. 
We then computed the likelihood of the normalized ImmGen profile to each of the 
mixture model classes, and reported the highest likelihood matches in Figure 2. In figure 
2C we include only data on ImmGen profiles that were ranked among the three highest 
likelihood matches for at least one of the mixture classes. 

 



Figure S1. Massively parallel RNA single-cell sequencing framework (MARS-
Seq). Schematic diagram of the massively parallel approach to single-cell RNA-seq, 
involving the use of randomized molecular tags to initially label poly-A tailed RNA 
molecules, followed by pooling labeled samples and performing two rounds of 
amplification, generating sequencing ready material (see fig. S2 and methods for an 
expanded version).  

S1 



Figure S2. Experimental procedure. Schematic diagram presenting the process of 
converting single-cell RNA samples to sequencing-ready DNA libraries. Shown are ten 
experimental steps describing how RNA is tagged, pooled, amplified, fragmented, and 
how library construction is being performed. Colored lines represent RNA (blue) or 
DNA (black) molecules, or oligos and primers (see methods for a detailed description). 
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Figure S3. Single-cell sorting assessment. (A) Automated microscope scanning of 
CFSE-stained cells single cell-sorted into 96-well plates. Representative pictures and 
software-generated magnifications of wells containing one or two cells. (B) Single-cell 
sorting quantification. We sorted two 96-well plates in single-cell mode into all wells of 
columns 2 to 12 of each plate (column 1 was used for calibration; see Materials and 
Methods). The histogram shows the number of wells in which no cell (4 wells), one cell 
(162 wells), two cells (4 wells) or more than two cells (0) were detected (six wells were 
not properly scanned by the microscope and excluded from the analysis). 
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Figure S4. Sequence mapping and tag filtering. (A) TTS mapping efficiency.  
Cumulative distribution of the fraction of reads that were mapped to mouse TTS  (x-axis, see 
methods) across 1528 multiplexed cells (y-axis show the cumulative cell fraction). Median 
mapping percentage is  ~25%. (B) Distribution of mapping loci around TTS. Shown is the 
spatial distribution of mapped molecules (Cell/RMT) around TTS. Dashed red lines 
demarcate the (-1000, 200) range in which we consider a molecule as associated with a TTS. 
(C) Read saturation. Distribution of number of sequencing products per inferred molecule 
(unique and valid RMT) before (dashed red curve) and after (black solid curve) barcode and 
RMT filtering (see methods) for two amplification batches (i.e. batches sharing the same 
pool barcode). These data show that the majority of the molecules were excessively 
sequenced. (D) RMT yield.  Shown are a distribution of RMTs after filtering (x-axis) and the 
fraction of cells (y-axis).  
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Figure S5. Filtering RMT sequencing errors. Shown are full sequencing and labeling data 
for 4 gene/cell examples. For each offset (x-axis) the number of reads of each color coded 
RMTs is shown. These profiles exemplify RMTs with multiple offsets (black dots, panels A-
C) that undergo sequencing errors and create spurious RMT with edit distance of one (colored 
dots).  Specifically in the Xpo6 example (A), the GGTT RMT (black) is mapped to multiple 
positions with high read counts, but the GGAT is mapped to a single loci which is shared with 
GGTT. In some cases poorly mapped molecules undergo RMT sequencing errors (as shown in 
(D)). Detection and filtering of RMT sequence errors is described in the methods section. 
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Figure S6. Technical variance. (A) ERCC RNA recovery of over four orders of 
magnitude. Shown is the average detection rate of ERCC spike-in molecules (y-
axis) vs. the number of ERCC molecules added to each single cell (log scale) across 1536 
CD11c+ cells. The value for undetected molecule was set to (-3). The data reflect robust 
estimation of concentrations over ~4 orders of magnitudes, with some technical variability 
and provide bounds on the expected technical sequence specific recovery and sequencing 
bias in the protocol. Overall, following extensive filtering, we estimate recovery rate of 
2-3% of the spiked-in molecules. (B-C) Association between standard deviation and 
average of detected molecule counts. Shown are coefficients of variance (CV, y-axis) vs. 
the average cellular mRNA (gray dots) and ERCC spike-in (red dots) molecule counts 
across 1536 Cd11c+ cel ls (B) and 95 Cd8+ pDCs (C) . This analysis 
shows low technical variance between cellular mRNA and spike-in molecules compared to 
recently published methods (Wu et al. (21)). As expected, spike-in molecules have lower 
variability than cellular mRNA molecules, as their variance is only technical and does not 
involve a biological component. pDCs also show relatively homogeneous expression, 
especially compared to the heterogeneous CD11c+ dataset. Spike-in controls were processed 
using the same pipeline used for mouse sequences. (D) Similar to Fig 1C, but using 10, 30 
cells. 
We note that we recommend assessing technical variance in single-cell RNA-seq by plotting 
variance/mean against the mean, rather than the CV (as done in Fig. 1). This reflects the 
desire to see only technical binomial variance (that scale with the mean) in the data. 
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Figure S7. Gene-cell covariation structure over splenic cell population. Shown are color-
coded (logarithmic scale) down-sampled molecular counts for selected genes (rows) over 
1040 single cells (columns; ordering is identical to the clustered correlation map map of 
figure 2A). Groups of strongly correlated cells (as in figure 2A) are marked by black lines on 
top. This direct visualization of the dataset demonstrates how the correlation between cell 
type-specific gene-expression profiles combine to generate effective and usually 
unambiguous classification of cells into types. Once cell classes are identified, a much large 
number of cell-type specific genes are characterized through pooling together single cells. 
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Figure S8. Mixture model for the CD11c+ enriched splenic cell population. (A) 
Selected cell-type specific genes for the spleen CD11c+ model.  The color coded 
matrix depict class-specific mean expression for the CD11c+ model shown in Figure 
2. Complete data for this model is provided in Table S2. (B) Coverage varies among 
cell types. Shown are the distributions pre-downsampled RMT coverage (Y axis) for 
over 2000 splenic cells, organized according to the inferred maximum a posteriori 
group (x-axis). While the model is inferred from uniform coverage data, different cell 
types are likely to provide markedly different numbers of recovered mRNAs. 
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Figure S9. Non-DC frequency-estimation validation. FACS analysis was used to validate 
the estimated frequencies of B cells (A) and pDCs (B) in the CD11c+ pool. Shown are 
independent experiments analyzing CD11c vs. CD19, a B cell marker, and PDCA-1 (Bst2), a 
pDC marker. B and pDC subpopulation frequencies are shown above the gating frame (gray).  
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Figure S10. Expression distribution of representative genes shows variability between 
single-cell classes. Three strong “marker” genes were selected for each single-cell class. 
Shown here is their RMT coverage distribution in each of the seven classes (using down-
sampled data to eliminate coverage difference between cell types).  
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Figure S11. Single-cell gene expression validation by real-time PCR. Shown are four 
genes differentially expressed among three identified CD11c+ subpopulations (scatter 
plots) validated by single-cell RT pre-amplification real time qPCR. Error bars represent 
mean ± s.e.m. (n = 23 single cells); AU, arbitrary units; asterisks indicates ANOVA 
Bonferroni’s Multiple Comparison test: *** P value < 0.001; * P value < 0.05 
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Figure S12. Clustering the spleen 
response to LPS by cell types. We 
pooled single-cell RNA-seq 
profiles for the seven splenic types, 
measured before and 2h after LPS 
treatment. We then computed the 
difference in mean expression for 
each gene and each class, and 
selected 2065 variably expressed 
genes for k-means clustering. The 
color-coded matrix indicates 
differential expression (blue- 
repressed, red – induced, yellow- 
highly induced) where genes are 
depicted in rows, and each column 
represent response in a different 
cell type. Complete data is 
available in Table S4. 
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Figure S13. Marker-sorted DCs. (A) Comparison of FACS and single-cell RNA-based sorting 
was facilitated by FACS sorting and sequencing RNA from three DC subpopulations: CD8high 
CD86+, CD8inter CD86- and CD4+ ESAM+. Gating is shown by gray boxes in the corresponding 
FACS plot. These sorted population were analyzed by single-cell RNA-seq and compared to the 
DC mixture model as shown in Fig 4B. (B) Shown are pooled single-cell mRNA mean counts 
(left) side by side with ImmGen gene expression data for three sorted DC classes (right). DC.
8+.SP, splenic CD8a+ DCs; DC.4+.SP, splenic CD4+ DCs; DC.8-4-11B-.SP, splenic CD8a- 
CD4- CD11b- (double negative) DCs. Genes that were specifically enriched in at least one of 
the three classes were selected for presentation. For the complete table of differentially 
expressed genes see table S5. 
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Figure S14. Shown is a gene correlation matrix depicting Pearson correlations 
between the single-cell RNA-seq profiles within 595 cells classified as DCs by our 
model. Only genes with at least 4 pairing with R > 0.14 are shown. 
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Figure S15. Shown is a gene correlation matrix depicting Pearson correlations between 
the in vivo LPS-treated single-cell RNA-seq profiles within 403 cells classified as DCs by 
our model. Only genes with at least 4 pairing with R > 0.15 are shown. 
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Figure S16. The heat map depicts mRNA counts in 476 single cells that were 
classified into class VII following in vivo LPS treatment. Cells were clusters using 
our EM-like iterative approach as described in the Methods. Genes are grouped 
according to the class in which they are mostly enriched. Complete data is 
available in Table S6. 
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Figure S17. For each of 
the seven splenic cell 
classes, we show the mean 
and variance of all genes, 
before and after LPS 
treatment. Genes showing 
high variance indicate 
p o t e n t i a l  f u r t h e r 
organization of these 
populations into subtypes. 
Genes affected following 
LPS treatment indicate 
potential re-organization of 
the cell population into 
specific response classes, 
as outlined above in more 
detail for CD4+ DCs (Fig 
S16). 

Class II 

Class I 

Class IV 

Class III 

Class VI 

Class V 

Class VII 

no LPS (untreated mouse) 2h after LPS IP injection 
S17 



 
 

19 
 

Supplementary Tables  
 
Table S7. Primers used during MARS-seq library construction 
 
Primer name Sequence and modifications 

barcoded  
RT primer 

 

CGATTGAGGCCGGTAATACGACTCACTATAGGGGCGACGTGT
GCTCTTCCGATCTXXXXXXNNNNTTTTTTTTTTTTTTTTTTTTN, 
where XXXXXX is the cell barcode and NNNN is the RMT 

ligation adapter AGATCGGAAGAGCGTCGTGTAG, modified with a phosphate group 
at 5' and a C3 spacer (blocker) at the 3' 

Second 
RT primer 

TCTAGCCTTCTCGCAGCACATC 

P5_Rd1  
PCR forward 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC
GACGCTCTTCCGATCT  

P7_Rd2  
PCR reverse 

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGAC
GTGTGCTCTTCCGATCT 

 
Table S8. Indexed ligation adapters for 384-well plates 
 
Primer name Sequence and modifications 
lig_NNNX4_ix1 

 

/5Phos/GACTNNNAGATCGGAAGAGCGTCGTGTAG/3SpC3/ 
lig_NNNX4_ix2 /5Phos/CATGNNNAGATCGGAAGAGCGTCGTGTAG/3SpC3/ 
lig_NNNX4_ix3 /5Phos/CCAANNNAGATCGGAAGAGCGTCGTGTAG/3SpC3/ 
lig_NNNX4_ix4 /5Phos/CTGTNNNAGATCGGAAGAGCGTCGTGTAG/3SpC3/ 
lig_NNNX4_ix5 /5Phos/GTAGNNNAGATCGGAAGAGCGTCGTGTAG/3SpC3/ 
lig_NNNX4_ix6 /5Phos/TGATNNNAGATCGGAAGAGCGTCGTGTAG/3SpC3/ 
lig_NNNX4_ix7 /5Phos/ATCANNNAGATCGGAAGAGCGTCGTGTAG/3SpC3/ 
lig_NNNX4_ix8 /5Phos/TAGANNNAGATCGGAAGAGCGTCGTGTAG/3SpC3/ 
 
Table S9. RT-preamplification primers 
 
Primer name Sequence 

CD37-F 
 

CTGTCTCCTGGGCCTGTATT 
CD37-R CACCAATTCCTGCACCCTTC 
NKg7-F GTTCTGTCTTGCATCCCAGC 
NKg7-R CTGGCTCCATCTCATACTGGT 
Ly6A-F AATTACCTGCCCCTACCCTG 

 

Ly6A-R GCAGATGGGTAAGCAAAGATTG 
Ccl4-F TGTGCTCCAGGGTTCTCAG 
Ccl4-R AATCCATCACAAAGCTTCTGTG 
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