
1

2

In the sense of the definition above, a system is both a generalization of one gene’s
“function” and a recipe for including and excluding components.

3

Starting from a biological motivation to annotate and discover systems as sets of
collaborating genes, we return to data management as something we need to get
under control for our purposes.

Don’t underestimate the difficulties in getting this right. There is a lot of data, and
the challenge is to figure out clearly where one wants to go with it, i.e. for what
purpose the data is being collected and stored. Important examples of common data
resources include ...

4

... the US NCBI (National Center for Biotechnology Information), one of the
world's major centres for molecular data, especially sequence and genome data, and
you can appreciate immediately that it may require some effort to figure out what to
do with this.

The NCBIs databases contain a very large multitude of information items, each
internally held consistent and cross-referenced to other databases, and very
sophisticated tools to maintain the system and discover and retrieve data.

(http://www.ncbi.nlm.nih.gov)

National Center for Biotechnology Information

National Library of Medicine

National Institutes of Health

5

6

In Shakespeare's classic tragedy of romantic love and family allegiance, Juliet
encapsulates the play's central struggle in this phrase by claiming that Romeo's
family name is an artificial and meaningless convention. Just like in the world of the
sequence abstraction, this is only partially true: the problems are not just based in
the fact that Romeo is called a Montague, but that he is in fact a member of
hisfamily. Even if a Thing does not change when its abstract label changes, such
labels rarely exist in isolation: other Things might be referred to by the same label
and changing one changes the composition of the entire set. (Or, to remain with our
example, as soon as Romeo renounces his name and thus his family, the family would
be no longer the same.) Even worse - and this is something we encounter every day
in bioinformatics - if identifiers are not stable over time, cross-references to that
identifier fail. If you decide you'll call a rose a skunk, people would become very
confused.

http://en.wikipedia.org/wiki/Romeo_and_Juliet

7

In order to make biology computable, we have to rigorously define our system of
objects and their relationships. This is useful even beyond the requirements of
bioinformatics. It is an exercise in clarifying the conceptual foundations of biology
itself. In many instances, definitions in current, common use are deficient, either
because our current state of knowledge has gone beyond the original ideas we were
trying to subsume with a term (e.g. gene, or pathway), or because an inconsistent
formal and colloquial meaning of terms leads to ambiguities (e.g. function), or
because the technical meaning of terms is poorly understood and generally misused
by many (e.g. homology).

8

This image represents a particular biomolecule, it was derived from the coordinates
of the complex of a yeast sporulation transcription factor bound to its cognate DNA
sequence. What is the best abstraction ?
Asking about the best is an ill-posed question if the purpose is not specified. There
are many possible abstractions, each serving different purposes. Even though
abstractions help us model nature by focussing on particular aspects, we must be
aware that real molecules have many more properties and features than any single
abstraction could capture. Working with abstractions implies we are no longer
manipulating the biological entity, but its representation. This distinction becomes
crucial, when we start computing with representations to infer facts about the
original entities. Inferences must be related back to biology! Common problems
include (a) that the abstraction may not be rich enough to capture the property we
are investigating (e.g. one-letter sequence codes cannot represent amino acid
modifications or sequence numbers), or (b) that the abstraction may be ambiguous
(e.g. one protein may have more than one homologue in a related organism, thus the
relationship between gene IDs may be ambiguous) or (c) that the abstraction may
not be unique (e.g. one protein may have more than one function, the same protein
name may refer to unrelated proteins in different species).
That said, since the properties of biomolecules derive from their molecular structure,
and structure is determined by the molecule’s components, sequence is the most
general abstraction of a gene or protein.

9

Working with abstractions implies we are no longer manipulating the biological
entity, but its representation.
This distinction becomes crucial, when we start computing with representations to
infer facts about the original entities. Inferences must be related back to biology!
Common problems include
(a) that the abstraction may not be rich enough to capture the property we are
investigating (e.g. one-letter sequence codes cannot represent amino acid modifications
or sequence numbers);
(b) that the abstraction may be ambiguous (e.g. one protein may have more than one
homologue in a related organism, thus the relationship between gene IDs is
ambiguous); or
(c) that the abstraction may not be unique (e.g. one protein may have more than one
function, the same protein name may refer to unrelated proteins in different species).

10

A selection of commonly used abstractions, the domain of computer science they
relate to, and common databases that store them.

11

12

Let’s assume we have identified the following information items that we would like to
begin to store for our systems project (given here for the Mbp1 protein). How do we
actually go about storing this information?

13

Your computer’s file system is a full-featured database and we can readily use it for
that purpose.

14

Often, simply putting data into a spreadsheet program is the right way to store it.
But be careful: spreadsheets don’t scale!

15

We will be using R lists and dataframes throughout the course to store and analyse
data.

16

A free, open-source, relational databse system like MySQL, Maria DB, or Postgres,
provides industry strength database features and scalability – at the price of a bit of
a learning curve and a bit of technical expertise to deploy the database on the
computer. Not too bad though, actually and there is tons of information available
about how to do this.

17

This is our Mbp1 data modelled in the free MySQL Workbench application, which
automatically generates the SQL syntax that will implement the model in a MySQL
database. Neat.

18

19

20

The fact that we can store this data does not necessarily mean we should store this
data – at least, perhaps not in exactly this way. Before we set out to store data we
need to spend some time constructing a proper data model. When the data is
complex, we may in fact need to spend a lot of time building a model. But this is
important: getting the data model right is the prerequisite to work with it efficiently
and avoid errors.

Speed only matters when you are on the right road.

21

Here is a first (but naïve) implementation of a data model that captures the data we
want to store. If we were to bring this into a spreadsheet format, the Entity Name
would be the name of the spreadsheet, the Attributes would be the column-labels,
and each row (or “record) would store the information about one protein. Fair
enough – this captures what we discussed previously and it looks straightforward.

So what could possibly go wrong?

22

Our first try at defining the data we want to collect and store for the proteins that
we want to work with has a number of problems. The structure of our data model is
poorly conceived. This model can easily lead to inconsistent data, it will be hard to
extend, and finding and cross-referencing information will be difficult.

Database theory has discussed for many years how to build data models that are
structurally consistent, i.e. the structure of the model itself makes it impossible to
get the data into an inconsistent state. This is called bringing a datamodel into
Normal Form. Several types of Normal Form have been defined, For our purposes I
will simply take you through the thinking we need to normalize our data model in
practice. Learn from this example, then apply to your own ideas in the assignment.

23

A primary key is a label that uniquely identifies a record in our database. This is the key
that we use to find and retrieve entities, and to define relationships between records in
different tables. It’s convenient to simply use an integer for this ID: if the ID is simply one-
larger than the largest key in the table, we can guarantee that it is unique. We shall resist
the temptation to add any information into the key. The purpose of the key is not to store
information, but to point to information. Appending strings, characters, keywords etc. may
seem like a good idea at first, but it becomes a nightmare when the underlying information
changes. In fact, such practice is an insidious example of duplicating information in different
places – and storing the same information in different places must always be
avoided. It becomes inconsistent.
That doesn’t necessarily mean there are no semantics at all in a primary key. Take a
refseq ID for example: if it reads NP_010227, it referes to an entry in the protein database.
If it reads e.g. NM_001180115 it refers to an entry in the mRNA section of the nucleotide
database. But note that this NM_ or NP_ prefix is information about the database, not
about the individual record.
Why don’t we use the refSeqID or the uniProtID of the protein as its unique, primary key?
After all, what’s good for the large databases should be good for us, no? We could, but these
keys are not under our control. We could conceivably want to duplicate a record, and then
e.g. define variant domain annotations, stemming from different algorithms. These variant
records would have the same refSeqID and uniProtID, which is oK – actually intended – in
our case, but then the refSeqID key is no longer unique and we can’t use it as a primary key.
Also, there is no promise made by the databases that there even is a one-to-one mapping
betwen their identifiers. If we define and maintain our own key, we can extend the model

24

Moving the species name out of the Protein table requires to define a new table.
The relationship between the two tables is established through two fields: the
Primary Key of the Taxonomy table, and the taxID field in the Protein table. The
relationships in data models are further described by their Cardinality: how often can
we expect a key value to appear in a table. In our case, the relationship implies that
there can be any number or even no proteins associated with a particular species (0,
n), but a protein must have exactly one species associated with it. Any number,
exactly one and at least one are the most commonly encountered cardinalities.

Thinking about the cardinalities is a good sanity check for our datamodel: the
cardinalities imply constraints on the kind of record entries and updates that our
database should be allowed to make. But they may also pinpoint conceptual
problems. For example, if we find an n to n relationship, we can be pretty sure that
our model is not really consistent. And if we have a 1 to 1 relationship, we might
just as well store all of the information about one entity as an attribute of the other
one – because that’s what a 1 to 1 relationship means.

25

Next problem: attributes should only depend on the protein, not on each other. For
example if we store both the protein sequence and its length, and if we then discover
that the sequence actually contains seven more residues at the N-terminus because
of an error in the gene model, will we remember to update the sequence length
together with the sequence? We might forget – and that would make our record
internally inconsistent. Such redundant information should not be separately stored,
but simply computed on demand from the most authoritative data we have – in our
case, that would be the sequence itself. We may be tempted to violate this rule in
case the computation is expensive, but in that case we need to ensure the fields are
automatically updated if information in one of them changes.

26

The domains we list here actually represent the worst part of our naïve datamodel.
Say, we discover that a related protein contains an AT-hook motif. Should we then
add a new attribute “AT-hook” to the table, for all of our proteins? And what about
the other 16,306 entries in the Pfam domain database (as of June 2016)? An
attribute for each? And do we really need to parse strings like “369-455,
505-549” and split them apart to find out how many of these domains are present
and where the annotation starts and ends? A good rule of thumb says: you should
build your model such that you need to parse your data only once: when you enter it
into your database. From then on, it should be enough to retrieve the data in a way
that you can use it directly. So: start and end should really be separate attributes of
an annotation.
The answer is: it depends. Database theorists have divided opinions on what
constitutes an atomic, indivisible value. E.g. we could argue that a sequence can be
decomposed into its amino acids, and therefore is not really atomic. It becomes a
question of context, and trying to be reasonable. In our case, I posit that this means
each annotation should refer to exactly one feature (a domain, a sequence variant, a
post-translational modification, a literature reference – whatever) and we should
store start and end of the annotation separately, because we virtually always need to
consider both values. Annotations that refer to one amino acid only (e.g. a
phosphorylation site) will have the same start and end, and annotations that refer to
the entire protein start at 1 and end at the last residue.

27

Taken together, we could put the features into a separate table like this. But this is
again a bit naïve: there are problems. Can you spot some?

28

The new Feature table does not have a unique identifier, but its primary key is a
composite of featureID and proteinID. It is much more work and much more error
prone to program search and update procedures for composite keys. But that alone
should not necessarily deter us – if there are benefits that outweigh the effort. More
importantly though, the table contains a name attribute that depends only on part
of the primary key, the featureID, and we are duplicating this for every actual
occurrence of the feature. This is not such a big deal here, but it may become one if
we decide that we really need additional information: Pfam IDs, PubMed references,
notes, pointers to structure coordinates etc. etc. In general, the value of an attribute
should depend on the key, the entire key, and on nothing but the key. That is not
guaranteed in this model. The underlying problem is that we are actually trying to
model an n to n relationship: a protein can have none or more of a particular type of
feature, and a feature can be annotated to none or more proteins – in principle: in
our model above, we could not even create a feature entry if we don’t have at least
one protein to annotate it to.
What we do instead is to employ a pattern that you will encounter very, very
frequently in data models. All of the information about a particular entity (such as
protein, feature ...) is kept in its own table. The actual annotation is stored in a
separate table (sometimes called a “join table”, a “junction table”, or an “associative
entity”).

29

Here we have created Annotation as a join-table for proteins and their features.
proteinID and featureID are foreign keys in the table, the annotation has its own
ID as well, and we separate out the start and end positions to define which part of
the sequence the annotation actually refers to. This solution is completely flexible
and able to accomodate any kind and any number of annotations for each sequence.

This is a good beginning for a simple protein data model. In this model, every
attribute depends functionally on the primary key – this means the information about
the attribute is specific to each data record in the table. Each attribute is atomic,
and all information items are unique, i.e. they are not duplicated anywhere.

30

