BCH441 BIOINFORMATICS

D ATA

BORIS STEIPE

DEPARTMENT OF BIOCHEMISTRY - DEPARTMENT OF MOLECULAR GENETICS
UNIVERSITY OF TORONTO

A systems definition

A system is a collection of collaborating genes that have more significant
relationships among each other than they have with genes that are not
system members.

What data will we use to define and discover])iulugi(';ll .\‘_\'SH'H]R.J

How will we store this data. and work with it?

In the sense of the definition above, a system is both a generalization of one gene’s
“function” and a recipe for including and excluding components.

BIOINFORMATICS

Data management is
the fundamental task of
bioinformartics.

“Bioinformatics”

Starting from a biological motivation to annotate and discover systems as sets of
collaborating genes, we return to data management as something we need to get
under control for our purposes.

Don’t underestimate the difficulties in getting this right. There is a lot of data, and
the challenge is to figure out clearly where one wants to go with it, i.e. for what
purpose the data is being collected and stored. Important examples of common data
resources include ...

NCBI

http://www.ncbi.nlm.nih.gov

Sitemap

p

dbEST (Expressed Sequence Tags)

dbGSS (Genome Survey Sequences)
dbMHC (Major Histocompatibility Complex)
€ dbSNP (Single Nucleotide Polymorphisms)
dbSTS (Sequence Tagged Sites)

€ Probe

TPA (Third Party Annotation Database)
Trace Archive

€ UniSTS (Sequence Tagged Sites)

€ PopSet (Evolutionary Relatedness)
UniVec (Vector Sequences)

WGS (Whole Genome Shotgun Sequences)

€ Proteins

RefSeq (Reference Sequences)

€ CDD (Conserved Domain Database)
€ Protein Clusters

€ MMDB (Molecular Modeling DataBase)
€ 3D Domains

€ PubChem BioAssay

€ PubChem Compound

€ PubChem Substance

€ Gene

€ UniGene

€ HomoloGene

CCDS (Consensus CoDing Sequence)

GEO (Gene Expression Omnibus)
€ Entrez GEO Profiles

¢ Entrez GEO DataSets

€ GENSAT

TaxBrowser
€ Entrez Taxonomy

c (a) (=

http: / /www.ncbi.nlm.nih.gov/Sitemap/

¢ oMM
€ Books

Molecular Databases
Nucleotide Sequences
Protein Sequences
Structures

Genes

Gene Expression
Taxonomy

Genomes

€ Entrez Genome

€ Entrez Genome Project

Map Viewer

€ Cancer Chromosomes

€ SKY/M-FISH & CGH Database

€ dbGAP (Genotypes and Phenotypes)

v) (¥
Databases Tools
Datahases
About
p Contact
(: Research
NCBI -
e
neering
Site Search
Data
Submissions Education

My NCBI (Cubby)
LinkOut

Batch Entrez Nucleotides
Batch Entrez Proteins
Citation Matcher

Batch Citation Matcher
Entrez Utilities

Data Analysis Tools

Similarity Searching (BLAST)
Nucleotide Sequence Analysis
Protein Sequence Analysis and P
Molecular Structure Analysis
Genome Analysis

Gene Expression

FTP
Databases and Software

Programming Tools

Entrez Utilities

NCBI Toolbox

Book: NCBI C++ Toolkit

XML at NCBI

Information Engineering Branch

... the US NCBI (National Center for Biotechnology Information), one of the
world's major centres for molecular data, especially sequence and genome data, and
you can appreciate immediately that it may require some effort to figure out what to

do with this.

The NCBIs databases contain a very large multitude of information items, each
internally held consistent and cross-referenced to other databases, and very
sophisticated tools to maintain the system and discover and retrieve data.

National Center for Biotechnology Information

National Library of Medicine

National Institutes of Health

(http://www.ncbi.nlm.nih.gov)

Abstraction

Database systems

Data models

ABSTRACTION

"What's in a name? That which we call a rose

I

By any other name would smell as sweet ..

In Shakespeare's classic tragedy of romantic love and family allegiance, Juliet
encapsulates the play's central struggle in this phrase by claiming that Romeo's
family name is an artificial and meaningless convention. Just like in the world of the
sequence abstraction, this is only partially true: the problems are not just based in
the fact that Romeo is called a Montague, but that he is in fact a member of
hisfamily. Even if a Thing does not change when its abstract label changes, such
labels rarely exist in isolation: other Things might be referred to by the same label
and changing one changes the composition of the entire set. (Or, to remain with our
example, as soon as Romeo renounces his name and thus his family, the family would
be no longer the same.) Even worse - and this is something we encounter every day
in bioinformatics - if identifiers are not stable over time, cross-references to that
identifier fail. If you decide you'll call a rose a skunk, people would become very
confused.

http://en.wikipedia.org/wiki/Romeo and Juliet

ABSTRACTION

Bioinformatics models biology such that we can

compute with its representations.

To compute with such models,

« Representations of biology as data ...
o« Semantics of data ...

« Operations with data entities ...

o Metrics of operations ...

... need to be rigorously defined

In order to make biology computable, we have to rigorously define our system of
objects and their relationships. This is useful even beyond the requirements of
bioinformatics. It is an exercise in clarifying the conceptual foundations of biology
itself. In many instances, definitions in current, common use are deficient, either
because our current state of knowledge has gone beyond the original ideas we were
trying to subsume with a term (e.g. gene, or pathway), or because an inconsistent
formal and colloquial meaning of terms leads to ambiguities (e.g. function), or
because the technical meaning of terms is poorly understood and generally misused
by many (e.g. homology).

ABSTRACTION

“ .
Place in complex’_\ = 3-D atomic
coordinates
“ Amino acid
Colloquial nameI_\ . ‘ ' | /—‘ sequence
p | z 3

Database

identifier
Description of
binding site

Genomic

sequence

\—‘ Homologies

\T Function
\—1 Image

This image represents a particular biomolecule, it was derived from the coordinates
of the complex of a yeast sporulation transcription factor bound to its cognate DNA
sequence. What is the best abstraction ?

Asking about the best is an ill-posed question if the purpose is not specified. There
are many possible abstractions, each serving different purposes. Even though
abstractions help us model nature by focussing on particular aspects, we must be
aware that real molecules have many more properties and features than any single
abstraction could capture. Working with abstractions implies we are no longer
manipulating the biological entity, but its representation. This distinction becomes
crucial, when we start computing with representations to infer facts about the
original entities. Inferences must be related back to biology! Common problems
include (@) that the abstraction may not be rich enough to capture the property we
are investigating (e.g. one-letter sequence codes cannot represent amino acid
modifications or sequence numbers), or (b) that the abstraction may be ambiguous
(e.g. one protein may have more than one homologue in a related organism, thus the
relationship between gene IDs may be ambiguous) or (¢) that the abstraction may
not be unique (e.g. one protein may have more than one function, the same protein
name may refer to unrelated proteins in different species).

That said, since the properties of biomolecules derive from their molecular structure,
and structure is determined by the molecule’s components, sequence is the most
general abstraction of a gene or protein.

ABSTRACTION

Some examples of abstraction:

. representation of a molecular property
e.g. nucleotide - or amino acid sequence,

3-D coordinates

. description of a function or role
e.g. transcription factor,

checkpoint control element

. abstract label

e.g. gene name, protein name

Working with abstractions implies we are no longer manipulating the biological
entity, but its representation.

This distinction becomes crucial, when we start computing with representations to
infer facts about the original entities. Inferences must be related back to biology!
Common problems include

(a) that the abstraction may not be rich enough to capture the property we are
investigating (e.g. one-letter sequence codes cannot represent amino acid modifications
or sequence numbers);

(b) that the abstraction may be ambiguous (e.g. one protein may have more than one
homologue in a related organism, thus the relationship between gene IDs is
ambiguous); or

(c) that the abstraction may not be unique (e.g. one protein may have more than one
function, the same protein name may refer to unrelated proteins in different species).

COMMON ABSTRACTIONS

conformation

matrices

processing, linear
algebra

Biological Abstraction Theoretical Database

Entity domain

Polymer 20 letter String processing Genbank, GenPept,
amino acid code RefSeq

Molecular XYZ coordinates, Floating point PDB

Molecular Node-Edge Graphs Networks, STRING, IntAct

Interactions Graph theory

Function Ontology, DAG Networks, Gene Ontology
Graph theory

Taxonomy Hierarchy Database methods, |NCBI/EBI/DDBJ
Graph Theory Taxon

Evolutionary Tree Graph Theory, TreeBase

relationship combinatorics

A selection of commonly used abstractions, the domain of computer science they
relate to, and common databases that store them.

10

Abstraction

Database systems

Data models

11

DATA MODELLING — MBP1 INFORMATION

NAME Mbpl
REFSEQ ID NP 010227
UNIPROT ID P39678
SPECIES Saccharomyces cerevisiae
TAX ID 4932
SEQUENCE msngiy ... nansha
LENGTH 833
KILA-N DOMAIN 21-93

ANKYRIN REPEATS 369-455, 505-549

These are only some data items associated with the Mbp1 protein.

Let’s assume we have identified the following information items that we would like to
begin to store for our systems project (given here for the Mbp1 protein). How do we
actually go about storing this information?

DATA MODELLING — FLAT TEXTFILES ON COMPUTER FILESYSTEMS

name Mbpl
refseq NP_010227
uniprot P39678 Data
species saccharomyces cerevisiaea

tax_id 4392

seq 001 MSNQIYSARYSGVDVYEFIHSTGSIMKRKKDDWVNATHILKAANFAKAKR
seq_002 TRILEKEVLKETHEKVQGGFGKYQGTWVPLNIAKQLAEKFSVYDQLKPLF
seq_003 DFTQTDGSASPPPAPKHHHASKVDRKKAIRSASTSAIMETKRNNKKAEEN
seq_004 QFQSSKILGNPTAAPRKRGRPVGSTRGSRRKLGVNLORSQSDMGFPRPAL
seq_005 PNSSISTTQLPSIRSTMGPQSPTLGILEEERHDSRQQQPQQNNSAQFKEI
seq 006 DLEDGLSSDVEPSQOLOQVENONTGFVPQOQSSLIQTQOTESMATSVSSS
seq 007 PSLPTSPGDFADSNPFEERFPGGGTSPIISMIPRYPVTSRPQTSDINDKV
seq_008 NKYLSKLVDYFISNEMKSNKSLPQVLLHPPPHSAPYIDAPIDPELHTAFH
seq_009 WACSMGNLPIAEALYEAGTSIRSTNSQGQTPLMRSSLFHNSYTRRTFPRI
seq_ 010 FQLLHETVFDIDSQSQTVIHHIVKRKSTTPSAVYYLDVVLSKIKDFSPQY
seq_011 RIELLLNTQDKNGDTALHIASKNGDVVFFNTLVKMGALTTISNKEGLTAN
seq_012 EIMNQQYEQMMIQNGTNQHVNSSNTDLNIHVNTNNIETKNDVNSMVIMSP —
seq 013 VSPSDYITYPSQIATNISRNIPNVVNSMKQOMASIYNDLHEQHDNEIKSLQ
seq_014 KTLKSISKTKIQVSLKTLEVLKESSKDENGEAQTNDDFEILSRLOEQNTK
seq_015 KLRKRLIRYKRLIKQKLEYRQTVLLNKLIEDETQATTNNTVEKDNNTLER -
seq 016 LELAQELTMLOLORKNKLSSLVKKFEDNAKIHKYRRIT. IEEVD
seq 017 SSLDVILQTLI EQIITI phdl _dat
seqlen 833

kila-n 21-93

369-455, 505-549

mbpl.dat

ankyrin

Your computer’s file system is a full-featured database and we can readily use it for
that purpose.

DATA MODELLING — SPREADSHEET: EXCEL / OPENOFFICE CALC / GOOGLE SHEETS

[CHGNG] Yeast_ApsesDomainProteins.xIsx "

O i @ @ oI & @ 'Z'QO'W'UHLOW--\Q

Search in Sheet)

Home | Layout Tables Charts | SmartArt Formulas Data | Review L - 34
Edit Font Alignment Number Format Cells Themes

£, (8] RN v [Calibri@ody) |v[12 |v| | As Av | =5 == gg|abcr | () WrapText~ |General v L'_ . Normal 3 . B (2. (A2, 58
— i »| B8 [=x1 2 ase.
v v v = =E| = &= ¥ v O G0 00 v
pase /Clearv | B 1 U S || A Merge < B |v| % | > || %8 $3 jcondhional Bed insert Delete Format ~ Themes Ad
K12 100 fx| -

quence
MSNQIYSARYSGVDVYEFIHSTGSIMKRKKDDWVNATHILKAANFAKAKRTRILEKEVLKETHEKVQGGFGKYQGTWVPLNI;

IAKQLAEKFSVYDQLKPLF
VNLC

=

DFTC WFC
IPNSSISTTQL! QSPTLGIL 2QPQQNNSAQFKEIDLEDGLSSDVEPSQQLQQVFNONTGFVPQQQSSLIQTQQTESMATSVSS
SPSLP E TSRP! KL PQVLLI
CSMGNLPIAEALYEAGTSIRSTNSQGQTPLMRSSLFHNSYTRRTFPRIFQLLHETVFDIDSQSQTVIHHIVKRKSTTPSAVYYLDVVLSKIKDFSPQYRIELLLN
TQDKNGDTALI VKMGALTTISNKEGLT/ YEQMMIQNGTNC v
SDYITYPSC QKTLKSISKTKIQVSLKTLEVL YTNDDFEILSRLQEQNTKKLRKRLI
saccharomyces RYKRLIKQKLEYRQTVLLNKLIEDETQATTNNTVEKDNNTLERLELAQELTMLQLQRKNKLSSLVKKF oviLaru
| 2 Mbpl NP_010227 P39678 4392 833 21-93 369-455, 505-549
MPFDVLISNQKDNTNHQNITPISKSVLLAT \TYSETDVYECYIRGFE QVFKIAQFSKTKRTKILEKESNDMQHEKVQ
GGYGRFQGTWIPLDSAKFLVNKYEIIDPVVNSILTFQFDI RKTSPGTKITSPSSYNK’ ATTT) APNP
SPLONLVFQTPQQFC 2Q(\TQKPLQFFPIPTNLONKNVALNNP
JIVPDGPMQSQQQQQHHHEYLT T NQSNEQQFYNQQEKIQRHFK
LMKQPLLWQSFQI PFSAGNTSSQNKLENKMTDQEYKQTILTILSSERSS
DVDQALLATLYPAPKNFNINFEIDDQGHTPLHWATAMANIPLIKMLITLNANALQCNKLGFNCI L PFHYLI
ELSVNKSKNPMIIKSYMDSIILSLGQQDYNLLKICLNYQDNIGNTPLHLSALNLNFEVYNRLVYLG: NL T
DRKLARNLPQKNYYQQQQQQQQPQNNVKIPKIIKTQHPDKEDSTADVNIAK IYLHSNQF IMEDLSNINSFVT
ILENSPILYRRRSQSISDEKEKAKDNENQVEKKKDPLNSVKTAMPSLESPSSLLPIQ! NQINKLNTKVSSLQ) DNEVVETESSIS
NNKKRLITIAHC TPINSISDLQSRIKETSSKLNSEKQNFIQSLEKSQALKLATIVQC Qe SETSSPKNT
| 3 Swi4 NP_011036 P25302 cerevisiaea 4392 KADAKFSNTVQESYDVNETLRLATELTILQFKRRMTTLKISEAKSKINSSVKLDKYRNLIGITIENIDSKLDDIEKDLRANA 1093 56-122 516-662
VNTC PSFNELSHQSTINLPFVQRETPNAYANVAQLATSPTQAKSGYYCRYYAVPFPTYPQQPQSPYQQAVL
PYATIPNSNFQPSSFPVMAVMPPEVQFDGSFLNTLH ILKSIAAASPTVTAT KPRVITT! Y
KLLNV ILAQREQILDHLYPLFVKDIESIVDARKPSNKASLT
Phdl NP_012881 P39678 cerevisiaea 4392 PKSSPAPIKQEPSDNKHEIAT PHU 366 209-285

Normal View Ready Sum=0 5

N

w

IS

Often, simply putting data into a spreadsheet program is the right way to store it.
But be careful: spreadsheets don’t scale!

DATA MODELLING — R LIST

proteinData <-
name =
refSeq =
uniProt =
species =
taxId =
sequence =

seqlen =
KilAN =
Ankyrin =
)

list(

"Mbpl",

"NP_010227",

"P39678",

"Saccharomyces cerevisiae",

"4392",

paste(
"MSNQIYSARYSGVDVYEFIHSTGSIMKRKKDDWVNATHILKAANFAKAKR",
"TRILEKEVLKETHEKVQGGFGKYQGTWVPLNIAKQLAEKFSVYDQLKPLF",
"DFTQTDGSASPPPAPKHHHASKVDRKKAIRSASTSAIMETKRNNKKAEEN" ,
"QFQSSKILGNPTAAPRKRGRPVGSTRGSRRKLGVNLORSQSDMGFPRPAI" ,
"PNSSISTTQLPSIRSTMGPQSPTLGILEEERHDSRQQQPQQONNSAQFKEI",
"DLEDGLSSDVEPSQQLQQVFNONTGFVPQQQSSLIQTQOTESMATSVSSS" ,
"PSLPTSPGDFADSNPFEERFPGGGTSPIISMIPRYPVTSRPQTSDINDKV",
"NKYLSKLVDYFISNEMKSNKSLPQVLLHPPPHSAPYIDAPIDPELHTAFH",
"WACSMGNLPIAEALYEAGTSIRSTNSQGQTPLMRSSLFHNSYTRRTFPRI",
"FQLLHETVFDIDSQSQTVIHHIVKRKSTTPSAVYYLDVVLSKIKDFSPQY",
"RIELLLNTQDKNGDTALHIASKNGDVVFFNTLVKMGALTTISNKEGLTAN",
"EIMNQQYEQMMIQNGTNQHVNSSNTDLNIHVNTNNIETKNDVNSMVIMSP" ,
"VSPSDYITYPSQIATNISRNIPNVVNSMKOMASIYNDLHEQHDNEIKSLQ",
"KTLKSISKTKIQVSLKTLEVLKESSKDENGEAQTNDDFEILSRLQEQNTK" ,
"KLRKRLIRYKRLIKQKLEYRQTVLLNKLIEDETQATTNNTVEKDNNTLER" ,
"LELAQELTMLQLQRKNKLSSLVKKFEDNAKIHKYRRIIREGTEMNIEEVD",
"SSLDVILQTLIANNNKNKGAEQIITISNANSHA",
sep=""),

833,

"21-93",

"369-455, 505-549"

save(proteinData, file="proteinData.Rda")

We will be using R lists and dataframes throughout the course to store and analyse

data.

15

DATA MODELLING — RELATIONAL DATABASE

® 066 Yeast_ApsesDomainProteins.mwb - MySQL Workbench %
@ MySQL Model EER Diagram
A e Q [|
| Navigator n
0
@
E | proteins v
name VARCHAR(20)
)
refSeq VARCHAR(20)
2 100 L) uniProt VARCHAR(20)
b M species VARCHAR(45)
| Catalog | Layers User Types taxid VARCHAR(10)
v mydb % sequence BLOB
v =) Tables seqLen INT
» ~ | proteins . KilA-N VARCHAR(45)
v = Views 1 Ankyrin VARCHAR(45)
v 35 Routine Groups -~l-1
n
11
) >
Ln

3
3

2

Description | Properties History *
Name Value |

Placed proteins

A free, open-source, relational databse system like MySQL, Maria DB, or Postgres,
provides industry strength database features and scalability — at the price of a bit of
a learning curve and a bit of technical expertise to deploy the database on the
computer. Not too bad though, actually and there is tons of information available
about how to do this.

DATA MODELLING — RELATIONAL DATABASE

® 66
) MySQL Model
‘M. 40
| Navigator
*, 100 3
| Catalog Layers User Types
v mydb
v =) Tables
»] proteins
v =) Views

v 75 Routine Groups

Description
Name Value

«,
| Properties = History

EER Diagram

0

Q

1

=l @ B ®C

A

Lzl =l s

3
3

SA

Yeast_ApsesDomainProteins.mwb - MySQL Workbench

| proteins v
name VARCHAR(20)
refSeq VARCHAR(20)
uniProt VARCHAR(20)
species VARCHAR(45)
taxid VARCHAR(10)
sequence BLOB

segLen INT

KilA-N VARCHAR(45) “name” "HAR(20)

Ankyrin VARCHAR(45) “refSeq” (20)
“uniProt” (20)
“species” : (45)
“taxId® \RCHAR(10)
" sequence” B
“seqLen” B
“KilA-N- (45) N
“Ankyrin® (45)

("refseq’))
= InnoDB

"mydb” . proteins”

’

’

L

’

(

Placed proteins

This is our Mbp1 data modelled in the free MySQL Workbench application, which

automatically generates the SQL syntax that will implement the model in a MySQL

database. Neat.

17

DATA MODELLING

There are many ways to store data and it 1s important
not to be dogmatic about which database system to
use. Define your objectives, evaluate alternatives,

and make an informed decision.

What do you want to do with the data?

(List objectives and preferred approaches)

18

Abstraction

Database systems

Data models

19

DATA MODELLING — ANALYSIS

NAME Mbpl

REFSEQ ID NP 010227 Some items describe

the molecule.
UNIPROT ID P39678

Some items
provide cross- SPECIES Saccharomyces cerevisiae
references. TAX ID 4932

SEQUENCE msngiy ... nansha
LENGTH 833 Some items describe
KILA-N DOMAIN 21-93 relationships to other

ANKYRIN REPEATS 369-455, 505-549 concepts.

The fact that we can store this data does not necessarily mean we should store this
data — at least, perhaps not in exactly this way. Before we set out to store data we
need to spend some time constructing a proper data model. When the data is
complex, we may in fact need to spend a lot of time building a model. But this is
important: getting the data model right is the prerequisite to work with it efficiently
and avoid errors.

Speed only matters when you are on the right road.

20

RELATIONAL DATA MODEL

Entity

Protein

Y414 N\ v
Entity Name

name
refSeq_ 1D
uniProt ID Attributes
species o ‘
tax ID
sequence
seqLen
KilA-N
Ankyrin

Here is a first (but naive) implementation of a data model that captures the data we
want to store. If we were to bring this into a spreadsheet format, the Entity Name
would be the name of the spreadsheet, the Attributes would be the column-labels,
and each row (or “record) would store the information about one protein. Fair
enough — this captures what we discussed previously and it looks straightforward.

So what could possibly go wrong?

21

RELATIONAL DATA MODEL

Entity

Protein

not unique [
name
doesn’t depend| I-efSquD
on the protein uniProtID

how can we be sure specles
this is consistent? taxID
Se(llleIlCe
| seqLen
"KGlA-N
awkward that AIlkyI’iIl
there can be

what if there are

other domains?

more than one

Our first try at defining the data we want to collect and store for the proteins that
we want to work with has a number of problems. The structure of our data model is
poorly conceived. This model can easily lead to inconsistent data, it will be hard to
extend, and finding and cross-referencing information will be difficult.

Database theory has discussed for many years how to build data models that are
structurally consistent, i.e. the structure of the model itself makes it impossible to
get the data into an inconsistent state. This is called bringing a datamodel into
Normal Form. Several types of Normal Form have been defined, For our purposes I
will simply take you through the thinking we need to normalize our data model in
practice. Learn from this example, then apply to your own ideas in the assignment.

22

RELATIONAL DATA MODEL

Entity

Protein

. introduce a unique identifier
.| | proteinID rimary Kev)

not unique - rrimal ney)

name

refSeqlD
uniProtID
species
taxID
sequence
seqLen
KilA-N
Ankyrin

A primary key is a label that uniquely identifies a record in our database. This is the key
that we use to find and retrieve entities, and to define relationships between records in
different tables. It’s convenient to simply use an integer for this ID: if the ID is simply one-
larger than the largest key in the table, we can guarantee that it is unique. We shall resist
the temptation to add any information into the key. The purpose of the key is not to store
information, but to point to information. Appending strings, characters, keywords etc. may
seem like a good idea at first, but it becomes a nightmare when the underlying information
changes. In fact, such practice is an insidious example of duplicating information in different
places — and storing the same information in different places must always be
avoided. It becomes inconsistent.

That doesn’t necessarily mean there are no semantics at all in a primary key. Take a
refseq ID for example: if it reads NP__010227, it referes to an entry in the protein database.
If it reads e.g. NM_ 001180115 it refers to an entry in the mRNA section of the nucleotide
database. But note that this NM__ or NP__ prefix is information about the database, not
about the individual record.

Why don’t we use the refSeqID or the uniProtID of the protein as its unique, primary key?
After all, what’s good for the large databases should be good for us, no? We could, but these
keys are not under our control. We could conceivably want to duplicate a record, and then
e.g. define variant domain annotations, stemming from different algorithms. These variant
records would have the same refSeqlD and uniProtID, which is oK — actually intended — in

our case, but then the refSeqlD key is no longer unique and we can’t use it as a primary key.

Also, there is no promise made by the databases that there even is a one-to-one mapping
betwen their identifiers. If we define and maintain our own key, we can extend the model

23

RELATIONAL DATA MODEL

ERD: Entity Relationship Diagram

Protein

proteinID
narmnie
doesn’t depend| I-efSquD Remove to separate table T&XOIlOIIly

on the protein uniProtID
taxID Cardinality
sequence Relationship
seqLen

KilA-N

Ankyrin Foreign key (pri

O,n 1 taxID

Sp ecies name

4

Moving the species name out of the Protein table requires to define a new table.
The relationship between the two tables is established through two fields: the
Primary Key of the Taxonomy table, and the taxID field in the Protein table. The
relationships in data models are further described by their Cardinality: how often can
we expect a key value to appear in a table. In our case, the relationship implies that
there can be any number or even no proteins associated with a particular species (0,
n), but a protein must have exactly one species associated with it. Any number,
exactly one and at least one are the most commonly encountered cardinalities.

Thinking about the cardinalities is a good sanity check for our datamodel: the
cardinalities imply constraints on the kind of record entries and updates that our
database should be allowed to make. But they may also pinpoint conceptual
problems. For example, if we find an n to n relationship, we can be pretty sure that
our model is not really consistent. And if we have a 1 to 1 relationship, we might
just as well store all of the information about one entity as an attribute of the other
one — because that’s what a 1 to 1 relationship means.

24

RELATIONAL DATA MODEL

Protein

proteinID
name

refSeqlD Taxonomy

uniProtID 0. 1
taxID ’ taxID

how can we be sure

this is consistent?| \| sequence Species name

KilA-N
Allkyl'in Remove seqLen — it’s redundant.
Compute from sequence if needed.

Next problem: attributes should only depend on the protein, not on each other. For
example if we store both the protein sequence and its length, and if we then discover
that the sequence actually contains seven more residues at the N-terminus because
of an error in the gene model, will we remember to update the sequence length
together with the sequence? We might forget — and that would make our record
internally inconsistent. Such redundant information should not be separately stored,
but simply computed on demand from the most authoritative data we have — in our
case, that would be the sequence itself. We may be tempted to violate this rule in
case the computation is expensive, but in that case we need to ensure the fields are
automatically updated if information in one of them changes.

25

RELATIONAL DATA MODEL

Protein

proteinID
name

refSeqlD Taxonomy
uniProtID 0n 1
taxID ’ taxID

what if there are sequence specles name

other domains? KilA-N
k |/Ankyrin

awkward that
there can be

Abstract this to generic Features that are

annotated on ranges (defined by start and end)
more than one

The domains we list here actually represent the worst part of our naive datamodel.
Say, we discover that a related protein contains an AT-hook motif. Should we then
add a new attribute “AT-hook” to the table, for all of our proteins? And what about
the other 16,306 entries in the Pfam domain database (as of June 2016)7 An
attribute for each? And do we really need to parse strings like “369-455,
505-549" and split them apart to find out how many of these domains are present
and where the annotation starts and ends? A good rule of thumb says: you should
build your model such that you need to parse your data only once: when you enter it
into your database. From then on, it should be enough to retrieve the data in a way
that you can use it directly. So: start and end should really be separate attributes of
an annotation.

The answer is: it depends. Database theorists have divided opinions on what
constitutes an atomic, indivisible value. E.g. we could argue that a sequence can be
decomposed into its amino acids, and therefore is not really atomic. It becomes a
question of context, and trying to be reasonable. In our case, I posit that this means
each annotation should refer to exactly one feature (a domain, a sequence variant, a
post-translational modification, a literature reference — whatever) and we should
store start and end of the annotation separately, because we virtually always need to
consider both values. Annotations that refer to one amino acid only (e.g. a
phosphorylation site) will have the same start and end, and annotations that refer to
the entire protein start at 1 and end at the last residue.

26

RELATIONAL DATA MODEL

Feature
Protein
1 0.n featurelD
proteinlD ' proteinlD
name name
refSeqID start
uniProtID end
0,n
taxID
sequence
Taxonomy
1
taxID
species name

Taken together, we could put the features into a separate table like this. But this is
again a bit naive: there are problems. Can you spot some?

RELATIONAL DATA MODEL

Feature
Protein
1 0 featurelD “Composite primary keys”
n —_— — — Mo e e ot
q ’ 9 can be awkward to work with
proteinlD roteinlD
name name —— | name does not depend on the
refSeqID start | proteinID
uniProtID end
0,n
taxID
sequence We separate the information
about a feature from where it is
yeing annotated to
Taxonomy being annota
1
taxID
species name

The new Feature table does not have a unique identifier, but its primary key is a
composite of featureID and proteinID. It is much more work and much more error
prone to program search and update procedures for composite keys. But that alone
should not necessarily deter us — if there are benefits that outweigh the effort. More
importantly though, the table contains a name attribute that depends only on part
of the primary key, the featurelD, and we are duplicating this for every actual
occurrence of the feature. This is not such a big deal here, but it may become one if
we decide that we really need additional information: Pfam IDs, PubMed references,
notes, pointers to structure coordinates etc. etc. In general, the value of an attribute
should depend on the key, the entire key, and on nothing but the key. That is not
guaranteed in this model. The underlying problem is that we are actually trying to
model an n to n relationship: a protein can have none or more of a particular type of
feature, and a feature can be annotated to none or more proteins — in principle: in
our model above, we could not even create a feature entry if we don’t have at least
one protein to annotate it to.

What we do instead is to employ a pattern that you will encounter very, very
frequently in data models. All of the information about a particular entity (such as
protein, feature ...) is kept in its own table. The actual annotation is stored in a
separate table (sometimes called a “join table”, a “junction table”, or an “associative
entity”).

28

RELATIONAL DATA MODEL

0,n

Feature

Annotation
Protein annotationID

featurelD

1 0,n B

proteinlD proteinlD
name start
refSeqlD end
uniProtID on
taxID ’
sequence

Taxonomy

1
taxID
species name

featurelD

name

Here we have created Annotation as a join-table for proteins and their features.
proteinID and featurelD are foreign keys in the table, the annotation has its own
ID as well, and we separate out the start and end positions to define which part of
the sequence the annotation actually refers to. This solution is completely flexible
and able to accomodate any kind and any number of annotations for each sequence.

This is a good beginning for a simple protein data model. In this model, every

attribute depends functionally on the primary key — this means the information about
the attribute is specific to each data record in the table. Each attribute is atomic,

and all information items are unique, i.e. they are not duplicated anywhere.

29

CONTACT

& Boris Talk Preferen out
‘ - W e =

Applied Bioinformatics

Computatonaisysioms IRCLSLAL)]
Biology

Bioinformatics

(BCH441)

Computational Systems Biology

(BCB420 / JTB2020)

This page has been accessed 1.

http:/ /steipe.biochemistry.utoronto.ca/abc

BORIS . STEIPEQUTORONTO.CA

DEPARTMENT OF BIOCHEMISTRY & DEPARTMENT OF MOLECULAR GENETICS
UNIVERSITY OF TORONTO, CANADA

30

