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In the sense of the definition above, a system is both a generalization of one gene’s 
“function” and a recipe for including and excluding components. 
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Starting from a biological motivation to annotate and discover systems as sets of 
collaborating genes, we return to data management as something we need to get 
under control for our purposes.  
 
Don’t underestimate the difficulties in getting this right. There is a lot of data, and 
the challenge is to figure out clearly where one wants to go with it, i.e. for what 
purpose the data is being collected and stored. Important examples of common data 
resources include ... 
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... the US  NCBI (National Center for Biotechnology Information),  one of the 
world's major centres for molecular data, especially sequence and genome data, and 
you can appreciate immediately that it may require some effort to figure out what to 
do with this. 
 
The NCBIs databases contain a very large multitude of information items, each 
internally held consistent and cross-referenced to other databases, and very 
sophisticated tools to maintain the system and discover and retrieve data. 
 
 
 
 
 
(http://www.ncbi.nlm.nih.gov) 

National Center for Biotechnology Information 

National Library of Medicine 

National Institutes of Health 
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In Shakespeare's classic tragedy of romantic love and family allegiance, Juliet  
encapsulates the play's central struggle in this phrase by claiming that Romeo's 
family name is an artificial and meaningless convention. Just like in the world of the 
sequence abstraction, this is only partially true: the problems are not just based in 
the fact that Romeo is called a Montague, but that he is in fact a member of 
hisfamily. Even if a Thing does not change when its abstract label changes, such 
labels rarely exist in isolation: other Things might be referred to by the same label 
and changing one changes the composition of the entire set. (Or, to remain with our 
example, as soon as Romeo renounces his name and thus his family, the family would 
be no longer the same.) Even worse - and this is something we encounter every day 
in bioinformatics - if identifiers are not stable over time, cross-references to that 
identifier fail. If you decide you'll call a rose a skunk, people would become very 
confused.  
 
http://en.wikipedia.org/wiki/Romeo_and_Juliet 
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In order to make biology computable, we have to rigorously define our system of 
objects and their relationships. This is useful even beyond the requirements of 
bioinformatics. It is an exercise in clarifying the conceptual foundations of biology 
itself.  In many instances, definitions in current, common use are deficient, either 
because our current state of knowledge has gone beyond the original ideas we were 
trying to subsume with a term (e.g. gene, or pathway), or because an inconsistent 
formal and colloquial meaning of terms leads to ambiguities (e.g. function), or 
because  the technical meaning of terms is poorly understood and generally misused 
by many (e.g. homology). 
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This image represents a particular biomolecule, it was derived from the coordinates 
of the complex of a yeast sporulation transcription factor bound to its cognate DNA 
sequence. What is the best abstraction ? 
Asking about the best is an ill-posed question if the purpose is not specified. There 
are many possible abstractions, each serving different purposes. Even though 
abstractions help us model nature by focussing on particular aspects, we must be 
aware that real molecules have many more properties and features than any single 
abstraction could capture. Working with abstractions implies we are no longer 
manipulating the biological entity, but its representation. This distinction becomes 
crucial, when we start computing with representations to infer facts about the 
original entities. Inferences must be related back to biology! Common problems 
include (a) that the abstraction may not be rich enough to capture the property we 
are investigating (e.g. one-letter sequence codes cannot represent amino acid 
modifications or sequence numbers), or (b) that the abstraction may be ambiguous 
(e.g. one protein may have more than one homologue in a related organism, thus the 
relationship between gene IDs may be ambiguous) or (c) that the abstraction may 
not be unique (e.g. one protein may have more than one function, the same protein 
name may refer to unrelated proteins in different species). 
That said, since the properties of biomolecules derive from their molecular structure, 
and structure is determined by the molecule’s components, sequence is the most 
general abstraction of a gene or protein. 
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Working with abstractions implies we are no longer manipulating the biological 
entity, but its representation.  
This distinction becomes crucial, when we start computing with representations to 
infer facts about the original entities. Inferences must be related back to biology! 
Common problems include  
(a) that the abstraction may not be rich enough to capture the property we are 
investigating (e.g. one-letter sequence codes cannot represent amino acid modifications 
or sequence numbers); 
(b) that the abstraction may be ambiguous (e.g. one protein may have more than one 
homologue in a related organism, thus the relationship between gene IDs is 
ambiguous); or 
(c) that the abstraction may not be unique (e.g. one protein may have more than one 
function, the same protein name may refer to unrelated proteins in different species). 
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A selection of commonly used abstractions, the domain of computer science they 
relate to, and common databases that store them. 
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Let’s assume we have identified the following information items that we would like to 
begin to store for our systems project (given here for the Mbp1 protein). How do we 
actually go about storing this information? 
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Your computer’s file system is a full-featured database and we can readily use it for 
that purpose. 
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Often, simply putting data into a spreadsheet program is the right way to store it. 
But be careful: spreadsheets don’t scale! 
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We will be using R lists and dataframes throughout the course to store and analyse 
data. 
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A free, open-source, relational databse system like MySQL, Maria DB, or Postgres, 
provides industry strength database features and scalability – at the price of a bit of 
a learning curve and a bit of technical expertise to deploy the database on the 
computer. Not too bad though, actually and there is tons of information available 
about how to do this.  
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This is our Mbp1 data modelled in the free MySQL Workbench application, which 
automatically generates the SQL syntax that will implement the model in a MySQL 
database. Neat. 
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The fact that we can store this data does not necessarily mean we should store this 
data – at least, perhaps not in exactly this way. Before we set out to store data we 
need to spend some time constructing a proper data model. When the data is 
complex, we may in fact need to spend a lot of time building a model. But this is 
important: getting the data model right is the prerequisite to work with it efficiently 
and avoid errors. 
 
Speed only matters when you are on the right road. 
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Here is a first (but naïve) implementation of a data model that captures the data we 
want to store. If we were to bring this into a spreadsheet format, the Entity Name 
would be the name of the spreadsheet, the Attributes would be the column-labels, 
and each row (or “record) would store the information about one protein. Fair 
enough – this captures what we discussed previously and it looks straightforward. 
 
So what could possibly go wrong? 
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Our first try at defining the data we want to collect and store for the proteins that  
we want to work with has a number of problems. The structure of our data model is 
poorly conceived. This model can easily lead to inconsistent data, it will be hard to 
extend, and finding and cross-referencing information will be difficult. 
 
Database theory has discussed for many years how to build data models that are 
structurally consistent, i.e. the structure of the model itself makes it impossible to 
get the data into an inconsistent state. This is called bringing a datamodel into 
Normal Form. Several types of Normal Form have been defined, For our purposes I 
will simply take you through the thinking we need to normalize our data model in 
practice. Learn from this example, then apply to your own ideas in the assignment. 
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A primary key is a label that uniquely identifies a record in our database. This is the key 
that we use to find and retrieve entities, and to define relationships between records in 
different tables. It’s convenient to simply use an integer for this ID: if the ID is simply one-
larger than the largest key in the table, we can guarantee that it is unique. We shall resist 
the temptation to add any information into the key. The purpose of the key is not to store 
information, but to point to information. Appending strings, characters, keywords etc. may 
seem like a good idea at first, but it becomes a nightmare when the underlying information 
changes. In fact, such practice is an insidious example of duplicating information in different 
places –  and storing the same information in different places must always be 
avoided. It becomes inconsistent. 
That doesn’t necessarily mean there are no semantics at all in a primary key. Take a 
refseq ID for example: if it reads NP_010227, it referes to an entry in the protein database. 
If it reads e.g. NM_001180115 it refers to an entry in the mRNA section of the nucleotide 
database. But note that this NM_ or NP_ prefix is information about the database, not 
about the individual record. 
Why don’t we use the refSeqID or the uniProtID of the protein as its unique, primary key? 
After all, what’s good for the large databases should be good for us, no? We could, but these 
keys are not under our control. We could conceivably want to duplicate a record, and then 
e.g. define variant domain annotations, stemming from different algorithms. These variant 
records would have the same refSeqID and uniProtID, which is oK – actually intended – in 
our case, but then the refSeqID key is no longer unique and we can’t use it as a primary key. 
Also, there is no promise made by the databases that there even is a one-to-one mapping 
betwen their identifiers. If we define and maintain our own key, we can extend the model  
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Moving the species name out of the Protein table requires to define a new table. 
The relationship between the two tables is established through two fields: the 
Primary Key of the Taxonomy table, and the taxID field in the Protein table. The 
relationships in data models are further described by their Cardinality: how often can 
we expect a key value to appear in a table. In our case, the relationship implies that 
there can be any number or even no proteins associated with a particular species (0, 
n), but a protein must have exactly one species associated with it. Any number, 
exactly one and at least one are the most commonly encountered cardinalities. 
 
Thinking about the cardinalities is a good sanity check for our datamodel: the 
cardinalities imply constraints on the kind of record entries and updates that our 
database should be allowed to make. But they may also pinpoint conceptual 
problems. For example, if we find an n to n relationship, we can be pretty sure that 
our model is not really consistent. And if we have a 1 to 1 relationship, we might 
just as well store all of the information about one entity as an attribute of the other 
one – because that’s what a 1 to 1 relationship means.  
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Next problem: attributes should only depend on the protein, not on each other. For 
example if we store both the protein sequence and its length, and if we then discover 
that the sequence actually  contains seven more residues at the N-terminus because 
of an error in the gene model, will we remember to update the sequence length 
together with the sequence? We might forget – and that would make our record 
internally inconsistent. Such redundant information should not be separately stored, 
but simply computed on demand from the most authoritative data we have – in our 
case, that would be the sequence itself. We may be tempted to violate this rule in 
case the computation is expensive, but in that case we need to ensure the fields are 
automatically updated if information in one of them changes. 
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The domains we list here actually represent the worst part of our naïve datamodel. 
Say, we discover that a related protein contains an AT-hook motif. Should we then 
add a new attribute “AT-hook” to the table, for all of our proteins? And what about 
the other 16,306 entries in the Pfam domain database (as of June 2016)? An 
attribute for each? And do we really need to parse strings like “369-455, 
505-549” and split them apart to find out how many of these domains are present 
and where the annotation starts and ends? A good rule of thumb says: you should 
build your model such that you need to parse your data only once: when you enter it 
into your database. From then on, it should be enough to retrieve the data in a way 
that you can use it directly. So: start and end should really be separate attributes of 
an annotation. 
The answer is: it depends. Database theorists have divided opinions on what 
constitutes an atomic, indivisible value. E.g. we could argue that a sequence can be 
decomposed into its amino acids, and therefore is not really atomic. It becomes a 
question of context, and trying to be reasonable. In our case, I posit that this means 
each annotation should refer to exactly one feature (a domain, a sequence variant, a 
post-translational modification, a literature reference – whatever) and we should 
store start and end of the annotation separately, because we virtually always need to 
consider both values. Annotations that refer to one amino acid only (e.g. a 
phosphorylation site) will have the same start and end, and annotations that refer to 
the entire protein start at 1 and end at the last residue. 
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Taken together, we could put the features into a separate table like this. But this is 
again a bit naïve: there are problems. Can you spot some? 
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The new Feature table does not have a unique identifier, but its primary key is a 
composite of featureID and proteinID. It is much more work and much more error 
prone to program search and update procedures for composite keys. But that alone 
should not necessarily deter us – if there are benefits that outweigh the effort. More 
importantly though, the table contains a name attribute that depends only on part  
of the primary key, the featureID, and we are duplicating this for every actual 
occurrence of the feature. This is not such a big deal here, but it may become one if 
we decide that we really need additional information: Pfam IDs, PubMed references, 
notes, pointers to structure coordinates etc. etc. In general, the value of an attribute 
should depend on the key, the entire key, and on nothing but the key. That is not 
guaranteed in this model. The underlying problem is that we are actually trying to 
model an n to n relationship: a protein can have none or more of a particular type of 
feature, and a feature can be annotated to none or more proteins – in principle: in 
our model above, we could not even create a feature entry if we don’t have at least 
one protein to annotate it to. 
What we do instead is to employ a pattern that you will encounter very, very 
frequently in data models. All of the information about a particular entity (such as 
protein, feature ...) is kept in its own table. The actual annotation is stored in a 
separate table (sometimes called a “join table”, a “junction table”, or an “associative 
entity”). 
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Here we have created Annotation as a join-table for proteins and their features. 
proteinID and featureID are foreign keys in the table, the annotation has its own 
ID as well, and we separate out the start and end positions to define which part of 
the sequence the annotation actually refers to. This solution is completely flexible 
and able to accomodate any kind and any number of annotations for each sequence.  
 
This is a good beginning for a simple protein data model. In this model, every 
attribute depends functionally on the primary key – this means the information about 
the attribute is specific to each data record in the table. Each attribute is atomic, 
and all information items are unique, i.e. they are not duplicated anywhere. 
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