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INFORMATION

Claude Shannon (1948) A Mathematical Theory of Communication;
Choice, Uncertainty and Entropy

[...] The fundamental problem of communication is that
of reproducing at one point either exactly or
approximately a message selected at another point.
Frequently the messages have meaning; that is they refer
to or are correlated according to some system with certain
physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem.

[.]

i.e we can't measure the function or importance of an aligned column—
because there is no precise metric that would achieve this. But we can
quantify the constraints that apparently were imposed upon a position of a
sequence alignment.

A quantitative theory of information was formulated by Claude Shannon in 1948. It
applies in many ways to biological sequences (and biological systems in general),
because it quantifies how different an observed distribution of states (e.g. amino
acids, or nucleotides) is from an expected distribution, e.g. produced by a stochastic
process, or merely reflecting general database trends. Observing a difference between

observation and expectation ...

.. implies that some selective process was operating on the sequence, which means ...

... there is some functional significance to it.




PROPERTIES OF AN EVENT

Claude Shannon (1948) A Mathematical Theory of Communication;
Choice, Uncertainty and Entropy

[...] Can we define a quantity which will measure, in some sense, how much information is
“produced” by [a discrete information source]?

Suppose we have a set of possible events whose probabilities of occurrence are py, p,, ... , p,,-
These probabilities are known but that is all we know concerning which event will occur. Can
we find a measure of how much “choice” is involved in the selection of the event or of how
uncertain we are of the outcome? If there is such a measure, say H(p,, p,, ... , p,,), it is
reasonable to require of it the following properties:

1. H should be continuous in the p,.

2. If all the p, are equal, p, = n"!, then H should be a monotonic increasing function of n. With
equally likely events there is more choice, or uncertainty, when there are more possible events.

... cont.

Shannon figured out the formula that measures the difference between observation
and expectation from a simple constraint. He sought out how to define a quantity, H,
that satisfied a number of intuitive properties that a measure of information has: ...




PROPERTIES OF AN EVENT

Claude Shannon (1948) A Mathematical Theory of Communication;
Choice, Uncertainty and Entropy

... 3. If a choice be broken down into two successive choices, the original A should be the
weighted sum of the individual values of H.
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3 23 153
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e 13 > 1/6

The meaning of this is illustrated here. At the left we have three possibilities

p,=172,p,=1/3, p;=1/6 . On the right we first choose between two possibilities each with
probability 1/2, and if the second occurs make another choice with probabilities 2/3, 1/3. The final
results have the same probabilities as before. We require, in this special case, that

H(1/2,1/3, 1/6) = H(1/2, 1/2)+ 1/2H(2/3, 1/3).
The coefficient 1/2 is because this second choice only occurs half the time.

... cont.

... any valid measure must be independent of the sequence of choices we make to
observe a particular distribution.




PROPERTIES OF AN EVENT

Claude Shannon (1948) A Mathematical Theory of Communication;
Choice, Uncertainty and Entropy

Theorem 2: The only H satisfying the three above assumptions is of the form:

H=-KY p;logp,
=1

Where K is a positive constant [... which] merely amounts to a choice of a unit of measure.

The form of H will be recognized as that of entropy as defined in certain formulations of
statistical mechanics where p;, is the probability of a system being in cell 7 of its phase space.

It turns out the there is only one mathematical expression with this property. The
quantity H is now known as (informational) entropy.




INFORMATIONAL ENTROPY - H

H = —E pilogp;
H=0 iff all p, except one are zero, and the one =l
remaining has p=1. In the absence of uncertainty the
entropy is zero.
For a given n, H is maximal if all p, are equal, i.e. :
the probabilities are 1/n. In this case H= log n. If we )
can choose equally from all symbols, we can create )
the greatest number of different arrangements. This
is the most uncertain situation.
For equiprobable e 1 1
nucleotides: H_ . =- Epl- log, p; =—4x Z]ng Z =2
Pa=Pc=pPs=pr=025: I€E{ACGT}
For equiprobable 1 1
. . pep
amino acids: HPP =- ¥ p;log, p; =—20x ——log, — =~ 432
Paa=0.05: i€{ AA} 20 20

This is simple to compute.

If n states are equally probable, H = log n.




EXPECTED ENTROPY

If characters are not
equiprobable we have to '

take actual frequencies fr N
into account. For two !
possible outcomes, A and
Bm we can plot H as a
function of the
probability of one
outcome, e.g. p(A).

1.0

0.8

0.6

entropy (bit)

04

(9
OO
o
()
o
o
o
o
o]
o
o
o
(o]
o
o
[o}
o]
(o}
o}
o
o
o
o
o
o

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

pA

If we have two possible outcomes A and B, H depends on the probabilites of A and B
(or A and 1-A, which is the same).

We can plot the entropy for pA = 0.1, pB= 0.9; pA=0.2, pB=0.8 ... etc.

Entropy is zero when either outcome has zero probability (0 log0 + 1 logl= 0).

Entropy is maximal when both outcomes are equiprobable i.e pA = pB = .



INFORMATION

Information is a decrease in uncertainty.

J = Hexpected B Hobserved

Information is defined as the difference between the properties of an
observed event and the expectation we had for that event.

Finally we get to define information:

Information is the difference between the entropy of a distribution that we expect,
and the entropy that we actually observe.




EXPECTED ENTROPY

H = _Epi log p;

i=1
For amino acids we have to consider the actual frequencies, e.g. of occurrence in a
database, or other collection.

(e.g. http://web.expasy.org/docs/relnotes/relstat.html)

IIDI

; W charged (+)
s W charged (-)
‘:ﬁ, o - B hydrophilic
2 B hydrophobic
= O plain
v -
L A G v E s I K R D T P N Q F Y M H c w
fAAdb <- c( "A"=0.0826, "Q"=0.0393, H <-functionCaa) {
"L"=0.0965, "S"=0.0661, "R"=0.0553, # informational entropy of aa
"E"=0.0673, "K"=0.0582, "T"=0.0535, return(-sumCaa * (log(aa) / 1og(2))))
"N"=0.0405, "G"=0.0708, "M"=0.0241,
"W"=0.0109, "D"=0.0546, "H"=0.0227,
"F"=0.0386, "Y"=0.0292, "("=0.0137,
"I"=0.0593, "P"=0.0472, "V"=0.0686)
> H(Crep(1/20, 20))
4.321928
> H(fAAdb)
4.166635

If we want to measure the information of amino acid distributions, we need to define
the expected background distribution. Assuming all amino acids are equally likely is

usually not a good assumption. Often we use the frequencies of amino acids that we

observe in a sequence database instead.




EXPECTED ENTROPY

H = —E pilogp;
i=1

What is the “expected entropy”? Which “background distribution” of
amino acids should we choose? There are several relevant distributions of
amino acid frequencies the interpretation of observations in a
(computational) experiment depends entirely on which distribution we
expect:

All amino acids equally likely

Tabulate frequencies from genome database

Tabulate frequencies from soluble protein sequences
Tabulate frequencies from membrane protein sequences
Tabulate frequencies from species specific sequence database
Tabulate frequencies from species amino acid content

Use propertions of metabolic cost of amino acid biosynthesis

]
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FREQUENCIES ARE NOT PROBABILITIES

AA
np 0S

N

The ratio of counts n of an observed amino acid 44 in a given position po {7
represents a sample from a population. It is not the same as the probability of that
amino acid in that amino acid.

* ppos

For small sample sizes (n < alphabet) the entropies will always be overestimated.

Various correction schemes exist, usually involving pseudocounts, in particular to
prevent any observed frequency of being zero. One approach is to add 0.5 to all
possible states.
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SEQUENCE LOGO PLOTS

Sequence logo example: bacterial signal sequences
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Sequence logos plot features of aligned sets of sequences. Each column corresponds to
a position in an alignment, the height of each stack corresponds to the information
calculated for the residues that are observed in that position, and the height of each
letter in a stack corresponds to its frequency in that position. This emphasizes the
conserved positions, and displays what is conserved.

For this plot, bacterila signal sequences were aligned on the signal-peptidase cleavage
site. Their common features include a positively charged N-terminus, a hydrophobic
helical stretch and a small residue that precedes the actual cleavage site.
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http: //steipe.biochemistry.utoronto.ca/abc
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