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The human protein-protein interaction network of aging-associated genes. A total of 261 aging-associated genes
were assembled using the GenAge Human Database. Protein-protein interactions of the human interactome were
collected from the 8.0 version of the STRING database using physical contacts only. The network was visualized
using the Cytoscape program. The degree (number of neighbors) of nodes is represented by the size of the circle
and the font. Note the high number of signaling pathway proteins among hubs (nodes with degrees - and
therefore size - much greater than average), exemplified by the MAPK/ERK and PI3K/AKT proteins.

Figure and caption from:

Simké G, Gyurkd D, Veres DV, Néndsi T, and Peter Csermely P (2009) Network strategies to understand the aging process
and help age-related drug design. Genome Med. 2009; 1(9): 90

Plots like these have become ubiquitous in the litearture. They have an undeniable aesthetic quality, but the
information about biological processes is limited. The authors mention “the high number of signalling pathway
proteins” among the nodes of large degree, but they have not (i) mentioned how a “signalling pathway protein” is
defined, (ii) described in detail how those “aging-related” proteins were selected in the first place, (iii) compared
this fraction against the fraction of signalling pathway proteins among all genes, (iv) quantified their finding, (v)
emphasized this class of proteins by colour in the plot.

Plotting networks is in general not a good way to analyze them: the inference process has to go the other way
around: analyze the network with computational means, then visualize the results in a plot. This plot may or
may not be a graph similar to the one above, in this particular case a simple boxplot of node-degree by GO
biological process category would have been more effective. Network plots show interactions, but no hypothesis
about those interactions has been suggested that the graph could help us visualize.

Let us thus discuss the backgrounds of graph theory and useful measures that we can apply towards biological
inference from relationship data.




ENTITIES: -omics technologies define the entities relevant to
systems biology — genes, proteins, regulatory RNA — and their
attributes of structure and function.

RELATIONSHIPS : To describe how these entities
collaborate their relationships need to be defined as well.

Such relationships have formal aspects (direction, multiplicity...)
and semantic aspects.

Entities and relationships map naturally into the objects of
Graph Theory.

The quantitative analysis of interactions takes bioinformatics to the next higher
dimension: we go from 1D to 2D with graph theory.




G RAPH : aset of vertices (nodes), and edges that relate them.

TREE : aconnected graph without cycles.

DIRECTED ACYCLIC GRAPH(DAG): directed graph
without directed cycles (GO has no tautologies).

RANDOM GRAPH: generated by some random - S
process. E.g. random geometric graph: probability of - =i: %75
edge depends on "distance" between nodes. 75 &

HYPERGRAPH : an edge can connected many nodes—
similar to overlapping sets. Useful for hierarchical models.

Definitions.



METABOLIC
NETWORK:

A bipartite graph that
contains metabolites,
enzymes and
reactions. Metabolites
and enzymes are both
nodes, but of a
different class.
Reactions are edges.
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DI1STANCE P ARITY can be used to test for bipartiteness.




A DUAL GrAPH ofa planar graph G has a vertex for each plane
region of G, and an edge for each edge in G joining two neighboring
regions.

Application: VORONOI
TESSELATION and
DELAUNAY
TRIANGULAT ION.




DE BRUIJN GRAPHS are directed, labeled graphs where each node
is a sequence and each edge connects nodes whose sequences overlap
with an offset of one character. This is useful for short-read sequence
assembly.

lacac —1caca—1acGa 1 cGAT —{GATT 1 ATTG |
[ tace — t1AC J— ATTA |

THE VELVET ASSEMBLER uses De Bruijn graphs. Advantages
include: reduced memory requirements, easy access of nodes through
hash tables, easier treatment of repetitive sequences.




EULER CYCLE: visits every edge
exactly once.

HAMILTON CYCLE: visits every node exactly once. cf.
Travelling Salesman Problem — finding the shortest Hamiltonian
Cycle 1s NP-hard, because all combinatorially many solutions
have to be considerd




The simplest metric of a graph is just its size: the number
graph below has 20 nodes and 21 edges.

) ® ®
e @° e
®
= @.o.é).
® ©

O
@

The degree of a node is the number of edges it has.
The nodes above are labelled, coloured, and sized
according to their degree.

of nodes and edges. The random

Node degrees

Number

Ollo o

If we plot a histogram of degrees, we
are analyzing the degree distribution.
This is quite sensitive to the process
that generated the network.

If we have a directed graph, a node may have incoming edges and outgoing edges. In
that case, we distinguish between “in-degree” and “out-degree” of the node.

We can conceptualize that nodes with a high degree lie in the centre of a network,
and that nodes with degree 1 constitute the boundary of the network. Therefore the
degree of a node is also a topological measure of the graph, i.e. it describes the
contribution of nodes to the overall “shape” of the graph: we call this interpretation

degree centrality.




Barabasi & Albert (1999) Emergence of scaling in random networks. Science 286:509-12.

"...we show that, independent of the system and the identity of its constituents,
the probability P(k) that a vertex in the network interacts with k other vertices
decays as a power law, following P(k) ~ k™. This result indicates that large
networks self-organize into a scale-free state, a feature unpredicted by all
existing random network models."
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SCALE-FREE N ETWORK: degree distribution follows a
power law: P(k) ~ ck” — the probability of degree k goes
(asymptotically) towards the reciprocal of a power yof k; easily
seen as linear segments on a log-plot. yis often between 2 and 3.

Degree distributions give us a way to reason about the circumstances that could have
produced a network of interactions in the real world.

Barabasi and Albert showed scale-free properties for movie-actor networks, pages in
the WWW, and the electric power grid.
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Jeong et al. (2000) The large-scale organization of metabolic networks. Nature 407:651-4.

"...We show that, despite significant variation [...] metabolic networks
have the same topological scaling properties and show striking
similarities to the inherent organization of complex non-biological
systems. This may indicate that metabolic organization is not only
identical for all living organisms, but also complies with the design

principles of robust and error-tolerant scale-free networks [...] ."
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a, Archaeoglobus fulgidus (archae);

b, E. coli (bacterium);

¢, Caenorhabditis elegans (eukaryote), shown on a log—log plot,
counting separately the incoming (In) and outgoing links (Out) for
each substrate. k;, (k) corresponds to the number of reactions in
which a substrate participates as a product (educt)

d, The connectivity distribution averaged over all 43 organisms.

It was soon appreciated, that many biological networks also have scale-free

properties.

This is not trivial, and begs the question what the WWW and metabolic networks
could have in common with power-grid layouts and developmental signalling

pathways.




HoOwis A SCALE FREENETWORK
GENERATED IN BI1oLOGY?

This is the crucial question that connects the mathematics and
biology of network analysis. If it has a non-trivial answer, it
would shed light on the objective function of biological
complexity!
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SCALE-FREE NETWORK: degree distribution follows a
power law: P(k) ~ ck ¥ — the probability of degree k goes
(asymptotically) towards the reciprocal of a power y of k; easily

seen as linear segments on a log-plot. y is often between 2 and 3.

SMALL-WORLD NETWORK: distance between two
randomly chosen nodes grows with the log of the network size:

D=a+blog|V|
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Barabasi & Albert (1999) Emergence of scaling in random networks. Science 286:509-12.

“Traditionally, networks of complex topology have been described with the
random graph theory of Erdés and Rényi (ER)”

Erdos—Renyi Model Gilbert Model

In the ER model, a graph is constructed
by connecting nodes randomly. Each

L ° o
g o, ¢
L ° edge is included with probability p
B 8 g independent of other edges or node
“ properties.

Barabasi-Albert Model Price Model

Note that the degree-distribution histograms (frequency is on a log-scale) are very
characteristic of the generative process.
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Barabasi & Albert (1999) Emergence of scaling in random networks. Science 286:509-12.

“Traditionally, networks of complex topology have been described with the
random graph theory of Erdds and Rényi (ER)”

In the BA model, "...starting with a small
number (m,) of vertices, at every time step
we add a new vertex with m(<m,) edges
that link the new vertex to m different

, ' e ‘ vertices already present in the system. To

' =5 incorporate preferential attachment, we
assume that the probability IT that a new
vertex will be connected to vertex i
depends on the connectivity k; of that
Barabasi-Albert Model Price Model vertex, so that H(kl) = kl/z‘]k/

[.]

The development of the power-law scaling
in the model indicates that growth and
preferential attachment play an important
role in network development."

Erdos—Renyi Model Gilbert Model

The problem here is that it is not obvious why protein-protein interactions should be subject
to preferential attachment. Nor is it entirely clear whether actual interaction graphs are
indeed scale-free.

I do not agree with Barabasi and Albert that the model “indicates that growth and
preferential attachment play an important role in network development”. This would be
confusing correlation with causation. They have indeed shown that a model, based on
preferential attachment, can reproduce characteristics of many networks. However we must
keep an open mind about whether there are other mechanisms that also could give rise to
scale-free properties. And indeed there are.

Alternative models include: the copy model that creates a scale-free distribution by adding
new nodes through copying a fraction of the links of an existing node. Rewiring of random

networks towards game-theoretic optimal objective functions also creates scale-free networks.

Hierarchical network models are scale-free, as are hyperbolic geometric graphs. All of these
have much more straightforward biological analogies than preferential attachment.

Besides, the actual networks of biology are not necessarily formed by optimization with a
single mechanism towards a common objective function, but are the result of a messy,
stochastic, vaguely conserved process of achieving sufficiency of purpose.

See also: https://en.wikipedia.org/wiki/Scale-free network
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But: there are important alternatives.
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But:

Probability (log)

there are important alternatives.

IN degree probability log-log plot for parameter set 20
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Copying models ...

Add a node and choose the
number of edges to add.
Choose a random node and
copy its edges.

This generates scale free and
community structures
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But: there are important alternatives.

. out-degree

10% e

count vs. out-degree -

Forest fire model graphs are generated
from a cellular automaton:

* A burning cell turns into an empty cell.

* A cell will burn if at least one neighbor
is burning.

* A cell ignites with probability feven if
no neighbor is burning

* An empty cell fills up with
probability p.
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SET MEASURES: size, degree statistics (average, median,
distributions ...)

TOPOLOGICAL MEASURES: Shortest path, centrality,
diameter, spanning trees. Related: network flow, causality

G RAPH MOTIFS: Discovery, distribution.
G RAPH CLUSTERING: Algorithms ...

G RAPH STATISTICS: Permutations, synthesis ...

Besides degree distributions, there are several other approaches to the quantitative
analysis of biological networks.
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In order to characterize the internal structure of graphs, we need to clarify first what
we mean by a path: a path is a sequence of adjacent nodes, where two nodes are
adjacent if they are connected by an edge. The sequence {R, T, O, A, L} is a path.

A shortest path: is the shortest path between two nodes. The shortest path between
{R, A} is {R, T, L, A}, it has length 3. The path {R, T, O, A} is also a %horte%t
path between R and A

The diameter of a graph is the . . .
longest shortest path. Here, it
is a path between N and P, .

shown by the pink line, it has

length 7. . .

To compute a shortest path,

we employ Dijkstra’s .

algorithm. To compute all .

shortest paths, we employ the .

Floyd-Warshall algorithm. .

How many diameters does this graph have?

I say: six.
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DIJKSTRA'S ALGORITHM

(%)

Dijkstra’s algortihm finds a shortest path between two nodes.
(7) Suppose we want to find the shortest path between the red (“origin”) and the green (“target”) node.
(7) We set the distance of the origin to 0, all other distances to co. The origin is our “current node”.

(#4) Next we collect all neighbors of the current node, and set their distance to one-more than the
distance of the current node.

(iv) We repeat what we did in (éiz) by considering all neighbors in turn. However, we never consider a
node that we visited previously, i.e. we include only nodes whose distance is co.

(v) We repeat what we did in (i) one more time, This is a loop. Lo-and-behold, this time we encounter
the target node.

(vi) From the target node, we look for a node whose distance is one-less and add it to the shortest path.
We repeat this, always going to a node closer to the origin, and adding that to the path. This is called
“backtracking”. Once we have reached the origin, the shortest path is defined.

This is generally considered an O(|V|?) algorithm, but the implementation based on a min-priority queue
implemented by a Fibonacci heap runs in O(|E|+|V|\log |V])

Fredman ML and Tarjan RE. (1984). Fibonacci heaps and their uses in improved network optimization
algorithms. 25th Annual Symposium on Foundations of Computer Science. IEEE. pp. 338-346.
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Betweenness centrality is a useful topological measure on graphs. It is high for
nodes that lie between many other nodes, i.e. on the shortest path that connects
these. You can think of nodes with high betweenness centrality to constitute
bottlenecks in the connections between other nodes.

We define 0, to be the set of all We define 6,(w) to be the set of all
shortest paths between nodes 7 and J. shortest paths between nodes 7 and j
In the example below there are three. that pass through node w. In the

example below this is one path.

Jij w)

Then the ratio measures what fraction of shortest paths between 7 and j

i
pass through w. In our example this is 1/3.
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The betweenness centrality of a node w is then C,(w) = Z ai;(w)
(W) = S Ak

the sum of this measure for all i # j # w. idjew U

®
o'@ O
©

In this example, the nodes have been sized
according to their degree, and coloured ‘
according to their betweenness centrality. .
Also the () values have been shown as

node labels.

Note that in general, betweeness centrality and degree centrality go in the same direction —
nodes with high degree tend to have high Cj values. But the relationship is not absolute -
e.g. the second highest C) value, 94, is in a node with degree 3, like two other nodes who
only have a Cj of 56. This node also has a higher C; than the node with C) 73, which has a
degree of 4.

Stress centrality is a related concept: the stress centrality of a node wis the number of
shortest paths passing through w.
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Properties of protein-protein interaction
networks

The properties of random networks (A), scale-
free networks (B), and hierarchical networks

(C). Protein networks are also called scale free,

because it is not possible to define a
meaningful average node in these networks.
Plotting the degree k of nodes in protein
interaction networks against the probability of
observing that degree P(k), follows a power
law (Bb). In these networks the clustering
coefficient C(k) does not change as the
function of the nodes degree (Be), meaning
that nodes with few interactions and a lot of
interactions alike tend to participate in highly
connected topological modules in the network.
These properties are different for random
networks (Aa, Ab, Ac) where edges are
randomly distributed across nodes, and
hierarchical networks (Ca, Ch, Cc), where
clusters are united in an iterative manner.

A Random network
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a Topological module b Functional module ¢ Disease module

/ \\\
/

() Topologically close @ Functionally similar @ Discase genes Bidirectional Directed
genes (o products) genes (or products) (or products) interactions interactions

Protein interaction networks have topological modules in which proteins are more connected to each
other than to the reset of the network (a). These represent genes in the same pathways, molecular
machines, or rigid architectural structures, i.e., functional modules (b). This has implications for
human disease biology, as genes involved in the same disease tend to fall into the same clusters or
functional modules. Modules enriched for genes from a particular disease are termed disease modules

(c).
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FLOYD-WARSHALL ALGORITHM: ...

1 let dist be a |[V| x |V] array of minimum distances initialized to
o (infinity)

2 for each vertex v

3 dist[v][v] « 0

4 for each edge (u,v)

5 dist[u][v] « w(u,v) // the weight of the edge (u,v)
6 for k from 1 to |V]

7 forifrom 1 to |V]

8 for j from 1 to |V|

9 if dist[i][j] > dist[i][k] + dist[k][j]

10 dist[i][j] « dist[i][k] + dist[k][j]

11 end if

O(IVP)

26



http: //steipe.biochemistry.utoronto.ca/abc
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