
1

2

In the computer, all data is represented as bits.
It depends on the context whether the bits are interpreted as an element of data -
integer, floating point number or text, or even a complex data structure such as an
image or a formatted word-processor document, or an instruction to the processor.

3

In order to store complex data, we need to agree on a data format.
We can roughly divide our options into “flat file formats” and structured data
grammars. In a flat file format, we have ad-hoc rules that identify the semantics of
individual lines. One such example is the FASTA format, named for a legacy
sequence alignment program of the 1980s.
The FASTA format is a simple, readable representation but it is not designed for
extensive annotations. Because of its simplicity, it is still the lingua franca of
bioinformatics file formats; practically bioinformatics tools and Web services that
operate with sequences are able to read and write FASTA formatted sequences.

4

Genbank has its own GenBank Flat file Format (GBFF).
The amount of annotation can be extensive, providing cross-references, lists of
features, sequence translations etc. You should be familiar with the syntax of
location identifiers and you should be familiar with the standard contents of a
Genbank record.

5

One would wish for precise format specifications published with every data record,
one would wish for self-describing formats, one would wish for ontologies, and
controlled vocabularies and one would wish for validated parser code in common
languages to be available with any database download ... in reality the
support of database users is generally quite poor. Why? This probably results from
the fact that one can't publish such support – or quality assurance efforts in general
– and one can't strengthen one's grant proposals with user support and what doesn't
get funded and doesn't get done.
The economical and intellectual damage resulting from this is vast. Several lifetimes
of graduate student man- and womanpower have been wasted through the need to
periodically update BLAST output file parsers. And it is said that there is not a
single parser that can correctly read all information in all PDB files.
R packages have made this situation a little better, but much still needs to be done.

6

Just like in human language, rigorous syntax rules enforce that you can't use bad
grammar and get away with it.

7

The essence of XML (Xtended Markup Language) is the “markup of data-elements
with opening and closing tags, or standalone tags, (formatted blue above); metadata
can be contained within tags as attributes (formatted purple above). As well, the
definition of an XML format must available at the URL that leads to the .dtd file
(“document type definition”). You can check the TinySeq DTD at the URL:
 https://www.ncbi.nlm.nih.gov/dtd/NCBI_TSeq.dtd

This principle makes XML a self-describing data format.
XML formatted files are human readable – but only ''in principle''. The abundance
of tags can make navigating the data challenging in practice. The loss of readability
is a trade-off for the gain in rigour. For R, XML formatted data can be parsed with
the older xml package and the newer xml2 package. Use these packages and
definitley resist the urge to parse XML “by hand”, using regular expressions.
Regular expressions can’t guarantee to be able to parse XML!

This small section of a Genbank file formatted as XML may illustrate what we mean
when we say XML is human readable only in principle...

8

9

JSON (Java Script Object Notation) was designed to follow Javascript dictionaries;
its syntax is very similar to python dictionaries – and it was specifically designed as
a more human-readable alternative to XML. There are two types of contents:
{objects} and key:value pairs. Keys are strings and should be unique within an
object. Values can be any datatype, or [arrays of data], or other {objects}.
Therefore, since objects can contain other objects, very complex data can be
represented.

The example above formats the previous XML example as JSON. The result is
reasonably compact and very readable, Moreover, all major computing languages
have libraries to read JSON data into language-native data objects. This makes
JSON very useful for data interchange.

10

We have discussed how we represent data above, and we have discussed how we
organize data, when we developed this data model to introduce principles of
relational datamodels and entity-relationship diagrams. Now we need to figure out
how to actually implement storing data.

11

To implement a data model, there are a number of choices.
Your computer’s file system is a full-featured database and we can actually use it to
implement a data model: each table can be a directory, and every record in the table
can be a text-file, e.g. of JSON formatted data about a protein.

12

Often, simply putting data into a spreadsheet program is the right way to store it.
But be careful: spreadsheets don’t scale! Popular choices of spreadsheet programs
include Excel and OpenOffice Calc, and Google Sheets on the Web.
Don’t use spreadsheet programs for data analysis though.
Export the data as .csv (comma separated values), or tab separated values, and then
import it in R (or python or whatever) for analysis.

13

We will be using R lists and dataframes throughout the course to implement the
protein datamodel and to store and analyse data.

14

For large-scale, robust data requirements, none of the the ad hoc solutions we
mentioned above will work. You need a “real” database. This comes with a bit of
installation effort, and a bit of a learning curve.
The dplyr package will soon provide R native support for industry-strength
databases (as of RStudio 1.1), which will further lower the threshold for using such
databases.
A free, open-source, relational databse system like MySQL, Maria DB, or Postgres,
provides industry strength database features and scalability. This is our Mbp1 data
modelled in the free MySQL Workbench application.

15

MySQL Workbench automatically generates the SQL code that will implement the
model in a MySQL or postgresql etc. database. Neat.

Full featured databases do much more than supporting the simple storage and
retrieval of data. We will discuss database features and performance later.

16

