A BIOINFORMATICS COURSE

CONCEPTS OF SEQUENCE ANALYSIS

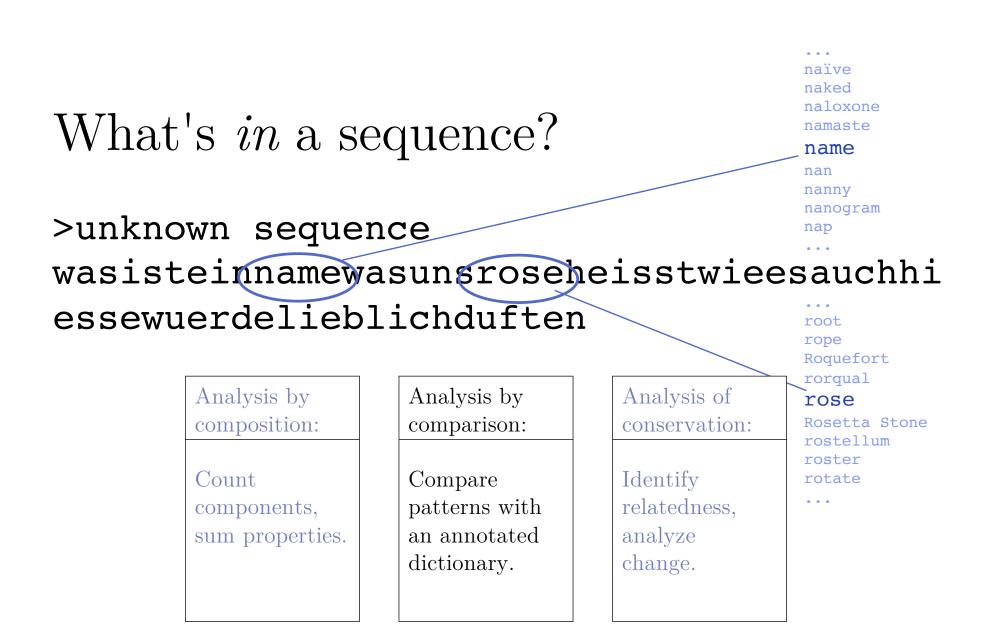
BORIS STEIPE

DEPARTMENT OF BIOCHEMISTRY – DEPARTMENT OF MOLECULAR GENETICS University of Toronto

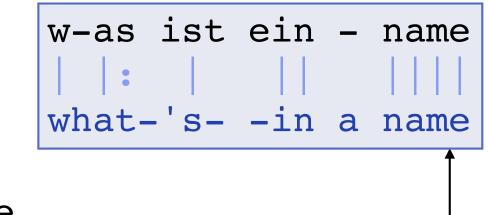
What is a sequence? ... or rather

What's *in* a sequence?

>unknown sequence wasisteinnamewasunsroseheisstwieesauchhi essewuerdelieblichduften


What's *in* a sequence?

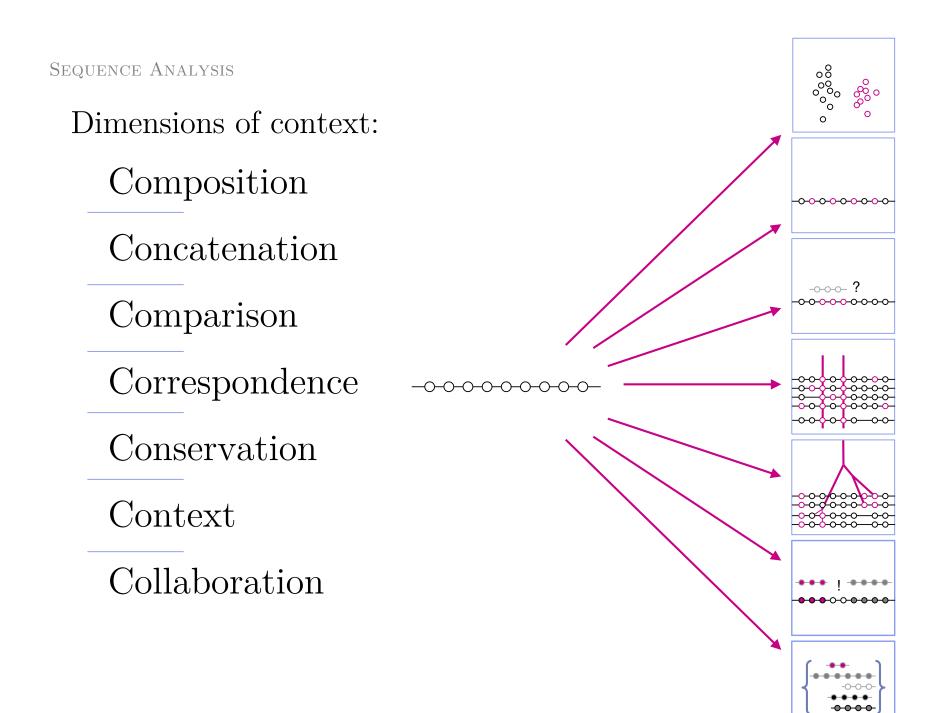
>unknown sequence wasisteinnamewasunsroseheisstwieesauchhi essewuerdelieblichduften


Analysis by	Analysis by
composition:	comparison:
Count components, sum properties.	Compare patterns with an annotated dictionary.

Analysis of conservation:

Identify relatedness, analyze change.

SEQUENCE


>unknown sequence wasisteinnamewasunsroseheisstwieesauchhi essewuerdelieblichduften

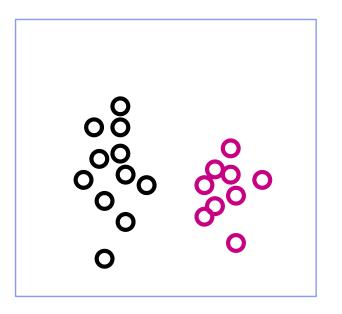
Analysis by	Analysis by	Analysis of
composition:	comparison:	conservation:
Count components, sum properties.	Compare patterns with an annotated dictionary.	Identify relatedness, analyze change.

Juliet: "What's in a name? That which we call a rose/By any other name would smell as sweet." Romeo and Juliet (II, ii, 1-2)

Analysis by	Analysis by	Analysis of
composition:	comparison:	conservation:
Count components, sum properties.	Compare patterns with an annotated dictionary.	Identify relatedness, analyze change.

Interestingly, the majority of information about sequences is not IN the sequence itself. It follows from the interaction of a biomolecule with its *context* and is discovered through *context-aware* analysis at various levels.

SEQUENCE ANALYSIS: COMPOSITION


Composition

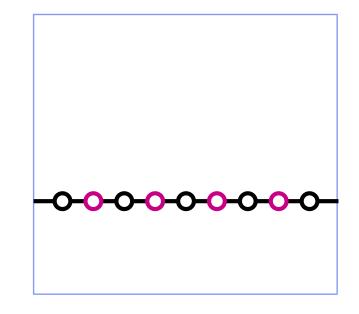
Unordered sets of amino acids.

Hypothesis: The weighted sum of properties of individual amino acids determines the aggregate properties of the protein.

Examples:

molecular weight, isoelectric point, coefficient of extinction, abnormal composition

SEQUENCE ANALYSIS: CONCATENATION


Concatenation

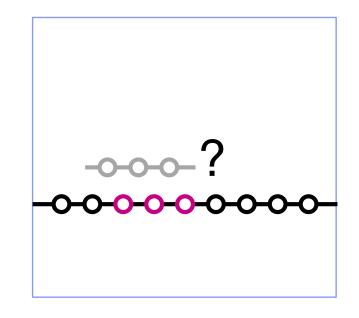
Amino acids in sequence context.

Hypothesis: The sequential arrangement of amino acids determines the properties of the protein.

Examples:

Amphipathic 2° -structure
Disordered segments
Polyproline structures
Transmembrane segments
Salt-bridges
Structure prediction

SEQUENCE ANALYSIS: COMPARISON


Pattern matching

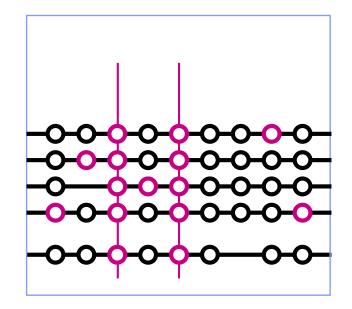
Comparison

Comparison of a sequence with (abstract) patterns.

Hypothesis: similarity of sequence patterns to known patterns generates a similar function.

Examples: Restriction sites Promoters & Operators Coiled coil domains Signal peptide cleavage sites Secondary structure Structure threading

SEQUENCE ANALYSIS: CORRESPONDENCE

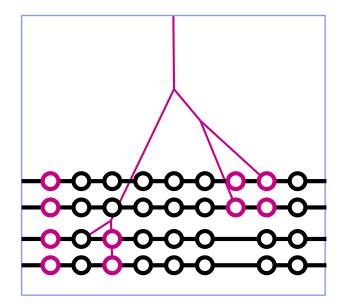

Correspondence

Analysis of corresponding positions in a sequence with other sequences.

Hypotheses: Average properties and property distributions are more informative than individual properties.

Examples:

Pairwise and multiple alignment BLAST Structural superposition Structural motifs

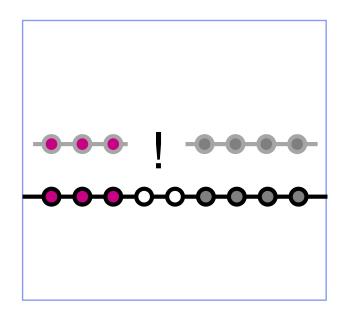

SEQUENCE ANALYSIS: CONSERVATION

Conservation

Change of a sequence over time.

Hypotheses: Important features are conserved Homologous sequences always have similar structure. Homologous sequences usually have similar function.

Examples: Annotation transfer Functional change Phylogeny Analysis of evolutionary pressure

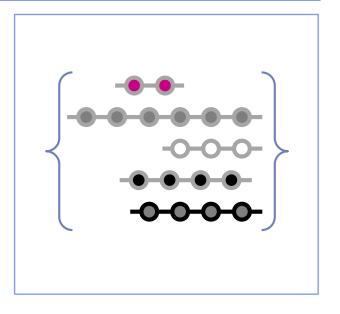

SEQUENCE ANALYSIS: CONTEXT

Context

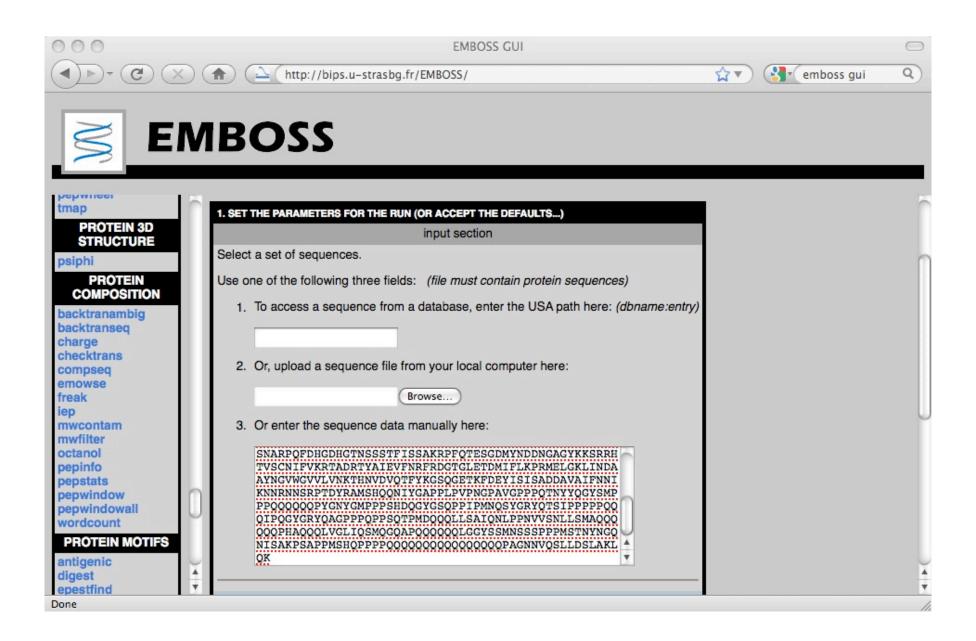
Arrangement of functional elements.

Hypothesis: Proteins and protein domains that form complexes have functions in which each component acts in the context of the other.

Domain annotation CDART


SEQUENCE ANALYSIS: COLLABORATION

Collaboration


Collection of sequences from shared context.

Hypothesis: sequences that share a context also share a functional relationship.

Co-expression / Co-regulation Co-location GO-term enrichment Metabolic / regulatory pathway Operon Phylogenetic footprints Systems biology

SEQUENCE ANALYSIS IN PRACTICE

PEPSTATS of Swi4.fa from 1 to 1093 Residues = 1093Molecular weight = 123805.94 Average Residue Weight = 113.272 Charge = 23.5Isoelectric Point = 9.2008A280 Molar Extinction Coefficient = 58600 A280 Extinction Coefficient 1mg/ml = 0.47Improbability of expression in inclusion bodies = 0.952 Number Residue Mole% A = Ala 3.751 41 B = Asx0 0.000 7 C = Cys0.640 D = Asp 54 4.941 E = Glu 565.124 F = Phe33 3.019 [...]

SEQUENCE ANALYSIS IN PRACTICE

In R:

seqinr package

(Excerpts)

cai	Codon Adaptation Index
computePI	Theoretical Isoelectric Point
count	Composition of dimer/trimer/etc oligomers
dotPlot	Dot Plot Comparison of two sequences
GC	fractional G+C content
pmw	Protein Molecular Weight
ucoweight	Weight of each synonymous codon
zscore	over- and under- representation of dinucleotides

Biostrings package (Excerpts)

alphabetFrequency	Calculate the frequency of letters in a biological sequence
countPattern	String searching functions
dinucleotideFrequency	Frequency of dinucleotides
findPalindromes	Searching a sequence for palindromes
longestConsecutive	Length of the longest substring containing only 'letter'
matchPDict	Matching a dictionary of patterns against a reference
pairwiseAlignment	Optimal Pairwise Alignment
reverseComplement	Reversing and complementing

SEQUENCE ANALYSIS IN PRACTICE

SEQUENCE ANALYSIS IN PRACTICE

Given so many resources, the question is not: What can you do?

But:

What should you do?

Never execute a procedure just because you can. First clarify your objectives. Then ask if the procedure is right for you:

- When is it appropriate?
- What data does it require?
- How is it used correctly?
- How are the results interpreted?
- How do the results support your objectives?

When to analyze: getting clear on the *workflow*. Sample objectives:

Predict expressed sequence from genome sequence;

Identify functional residues in order to predict effects of sequence variation and correlate this with observed phenotypes;

Predict molecular weight, extinction coefficient to interpret experimental results;

Predict post-translational modification to provide hypotheses for evaluating experiments;

Predict domain boundaries to clone and express domains separately;

Annotate homologues to define evolutionary relationships;

Identify sets of co-expressed genes to predict genes of related function;

Predict interaction partners in order to deconstruct developmental / regulatory / metabolic pathways and identify drug targets.

When to analyze: getting clear on the *workflow*. Sample objectives:

Predict expressed sequence from gerGenerally, experimentsIdentify functional residues in order
correlate this with observed phenotyshould be able to lead toPredict molecular weight, extinction
experiments;predictions. Usually thesePredict post-translational modificati
experiments;predictions are part of aPredict domain boundaries to clonelarger workflow.

Annotate homologues to define evolutionary relationships;

Identify sets of co-expressed genes to predict genes of related function;

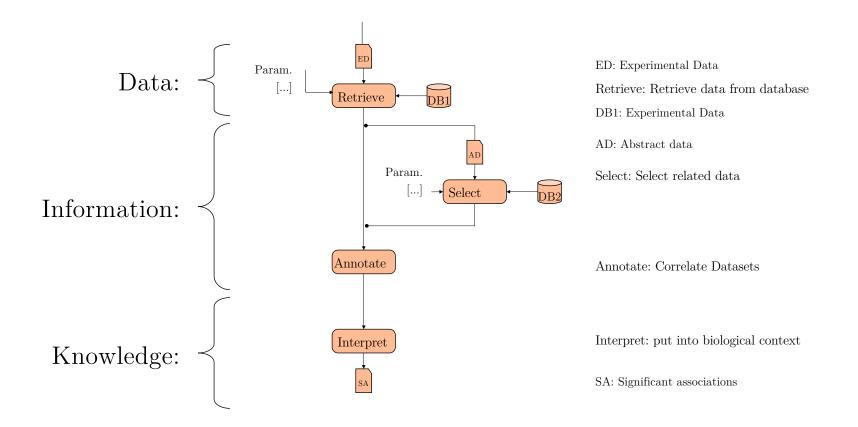
Predict interaction partners in order to deconstruct developmental / regulatory / metabolic pathways and identify drug targets.

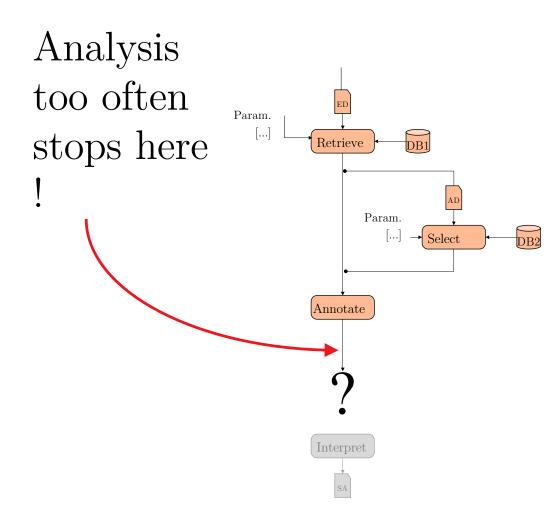
When to analyze: getting clear on the *workflow*. Sample objectives:

Predict expressed sequence from genome sequence;

Identify functional residues in order to predict effects of sequence variation and correlate this with observed phenotypes;

Predict molecular weight, extinction coefficient to interpret experimental results;


Predict post-translational modification to provide hypotheses for evaluating experiments;


Predict domain boundaries to clone and exp

Annotate homologues to define evolutionary

Identify sets of co-express

Predict interaction partners in order to dece metabolic pathways and identify drug targe Sometimes (rarely), no experimental validation is possible. Then the prediction is the endpoint of the workflow and may lead to a new hypothesis ("Discovery Science"). Mapping data / information / knowledge into tasks. In general ...

To complete the workflow, we need well defined, integrated processes that span the entire workflow from the primary data, to the ultimate goals of the experiment.

. . .

Examples:
Explanation / Prediction / Intervention
Validated genetic markers
Mechanistic insights into biological systems
Understanding our phylogeny
Rational protein engineering
Rapid vaccine development

Goals are needed to guide processes !

SEQUENCE CHOICES

For ...

Untranslated regions, splice sites, regulatory regions, gene context, recent evolutionary variation ...

Use ...

Finished genome sequence: chromosomes, contigs ... (Not ESTs, STS ...)

Translated, spliced nucleotide sequence, coding SNPs, isoforms mRNA ...

All protein related questions ... ---> Protein sequence

Whenever possible: \longrightarrow Use refseq or SwissProt

Always be clear about taxonomy: Organism and strain!

SEQUENCE CHOICES

For	Use	
Untranslated regions, splice sites, regulatory regions, gene \longrightarrow	Finished genome sequence: chromosomes, contigs (Not FST: STS)	
Principle:		
Use the sequence in which the information $\frac{1}{4}$ you are looking for is <i>conserved</i> in biology.		
Venenever possible.	Ope reiped of Dwippi rot	

Always be clear about taxonomy: Organism and strain! Conserved ...: Contribution to fitness function demonstrates biological relevance. SEQUENCE ANALYSIS IS AN EXPERIMENT LIKE ANY OTHER

Treat sequence analysis like a wet-lab experiment:

Record essential parameters:

For *static parameters*, a link or reference may be sufficient. *Dynamic parameters* need to be recorded completely. (If possible).

Include controls!

Good choice for *negative controls*: shuffled sequences. *Positive controls*: literature.

DORIS. SIEITE® OIORONIO. CA DEPARTMENT OF BIOCHEMISTRY & DEPARTMENT OF MOLECULAR GENETICS

http://steipe.biochemistry.utoronto.ca/abc

BORIS . STEIPE@UTORONTO.CA

DEPARTMENT OF BIOCHEMISTRY & DEPARTMENT OF MOLECULAR GENETICS UNIVERSITY OF TORONTO, CANADA