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PATTERNS

Biological patterns are not merely abstract 5 RAATTY-3' Apol
symbols ...

rebase.neb.com

7
DNA: restriction nuclease site ?@3{ ;@a\i
ARDY D
15 N
RNA: GNRA Tetraloop ¥ 1ZIF.PDB

Peptide: KDEL ER retention signal

PDOC00014
Protein structure: Zn-finger

www.expasy.ch/prosite

S
... but representations of actual molecules. }

1ZAA.PDB

A sequence is fundamentally different from an unordered set, since its elements
provide context for each other.

Sequence patterns are not just signs, they are different molecules: a pattern with a
different sequence is a different pattern. Constraints on patterns can be structural or
functional.




Pattern matching is a decision problem

Substring matching Yes or No answer:
Regular expressions Deterministic ...
PSSMs & Profiles

HMMs

More or Less answer:

Neural networks Probabilistic ...

Support Vector Machines
Decision Trees

Pattern search (or pattern matching) means inspecting an entity and stating
whether that entity is an example of a given pattern. Usually the entity is a
substring of a sequence, but patterns in protein structure, biological networks or
morphogenesis can also be computationally defined.

Pattern discovery means finding patterns that have not been defined a priori.




SUBSTRING SEARCH

GAATTC - Brute-Force Algorithm
AGGCCTGAGACCAGAATTCGAGCTC

Test first position of pattern — G-A: Mismatch, move along by one.

G ) G-G: Match, test second position of pattern.
GA ) A-G: Mismatch, move along by one.
gA .. ete.
G
G
G
G
GA i
caa Brute force:
G
GA
GQA compare every position with
°s the pattern until a mismatch
e is encountered, then shift
GA
GAA pattern by one.
GAAT
GAATT
GAATTC
AGGCCTGAGACCAGAATTCGAGCTC 19+6 — 25 COIIlp&I‘iSOllS

Deterministic pattern matching is a well understood field of computer science. The
worst case scenario is that every position of the pattern needs to be compared with
every position of the sequence to determine whether an instance of the pattern i
spresent in the sequence or not. But much more elegant solutions than this “brute
force” approach have been described ...




GAATTC - Boyer-Moore Algorithm
AGGCCTGAGACCAGAATTCGAGCTC
C
C

TC

C
C
TC
TTC
ATTC
AATTC
GAATTC

AGGCCTGAGACCAGAATTCGAGCTC

Boyer-Moore algorithm

Test last position of pattern — C-T: Mismatch,
realign pattern to where "T" could have matched (+1)

Test last position of pattern — C-G: Mismatch,
e

realign pattern to where "G" could have matched (+6)
Boyer-Moore:
Move pattern to skip over

positions that can't possibly
be part of a pattern-match.

5+ 6 = 11 comparisons,

75% more efficient

Check out J. S. Moore's own step-by-step explanation ...
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/fstrpos-example.html

... such as the Boyer-Moore algorithm. For a step-by-step explanation see http://

www.cs.utexas.edu/users/moore/best-ideas/string-searching /fstrpos-

example.html




Index Tree Root

Build index of substrings

. A C G T
(remember positions).
AA| AC| AG AT TG, |TT
AAC AAG| AAT TTG TTT

3 14 7 31
Query: AAT :

Search Index for:

iz =9
AAT = i+8
Genome: GCAAAAAATGAAAAAGACAGCTATCGCGATTGCAGTGGCA
Find: i = 4
1: : 4 — Search is only 01\,%(1.““‘“,,.“)
AAT: 7 (=4+3)

If searches are to be repeated, pre-computed index trees are much faster than
examining the entire sequence. In an index tree, simply look up where a pattern
could be. Time (and storage space) invested in constructing the index pays off
manyfold for every lookup.

Tree-based pattern searches use “suffix trees” to find matches in time proportional to

the length of the pattern, not the size of the database!



DETERMINISTIC PATTERN MATCHING: REGULAR EXPRESSIONS

Example: amphipathic helix search in Mbpl

Regular Expression PCRE B [™flags
[ALMIV]..[ALMIV]...[ALMIV].. ALMIV]...[ALMIV]..[ ALMIV] m
Test String

MSNQIYSARYSGVDVYEFIHSTGSIMKRKKDDWVYNATHILKAANFAKAKRTRILEKEVLKETHEKVQGGFG
KYQGTWVPLNIAKQLAEKFSVYDQLKPLFDFTQTDGSASPPPAPKHHHASKVDRKKAIRSASTSAIMETKR
NNKKAEENQFQSSKILGNPTAAPRKRGRPVGSTRGSRRKLGVNLQRSQSDMGFPRPAIPNSSISTTQLPSI
RSTMGPQSPTLGILEEERHDSRQQQPQQNNSAQFKEIDLEDGLSSDVEPSQQLQQVFNQNTGFVPQQQSSL
IQTQQTESMATSVSSSPSLPTSPGDFADSNPFEERFPGGGTSPIISMIPRYPVTSRPQTSDINDKVNKYLS
KLVDYFISNEMKSNKSLPQVLLHPPPHSAPYIDAPIDPELHTAFHWACSMGNLPTAEALYEAGTSIRSTNS
QGQTPLMRSSLFHNSYTRRTFPRIFQLLHETVFDIDSQSQTVIHHIVKRKSTTPSAVYYLDVVLSKIKDFS
PQYRIELLLNTQDKNGDTALHIASKNGDVVFFNTLVKMGALTTISNKEGLTANEIMNQQYEQMMIQNGTNQ
HVNSSNTDLNIHVNTNNIETKNDVNSMVIMSPVSPSDYITYPSQIATH OMASIYNDLH
EQHDNEIKSLQKTLKSISKTKIQVSLKTLEVLKESSKDENGEAQTNDD
RLIKQKLEYRQTVLLNKLIEDETQATTNNTVEKDNNTLERLELAQELTNREALUENELESLU AL
HKYRRIIREGTEMNIEEVDSSLDVILQTLIANNNKNKGAEQIITISNA NN

An amphipathic helix has a regular pattern of hydrophobic amino acids which are adjacent in

the folded helix and thus form a hydrophobic face.

To be able search for patterns we need a convention to define them. In particular, we
would like to be able to find degenerate patterns: patterns in which we allow a
number of alternative choices for particular positions. Such patterns are commonly
written as Regular Fxpressions.




RNA

BIOLOGICAL PATTERN EXAMPLES

Translation

=
T

Catalysis

%
J_

-
« Splice sites™
» Cap, polyA
« TIR
« IRES
» Genetic code
« seCys signal

-

~

o tRNA motifs
e ribozymes

(.

*Splice sites: specific bases are required, but context is of key importance.




3IOLOGICAL PATTERN EXAMPLES

e Restriction sites
Modification  Methylation sites

e Enhancer

e Silencer

D N A Transcription « Repressor
(Operator)

L J e Promoter
L ) s ) e Terminator
Replication
* Ori




DNA PATTERNS: RESTRICTION ENDONUCLEASE RECOGNITION SITES

Recognition Sequence: ACCTGC (4/8)
http: //rebase.neb.com/

5' ..ACCTGCNNNNWNNNN 3'

3! TGGACGNNNNNNNNI{5'
REBASE enzyme #: 527
Prototype: BspMI
Oorg #: 411
Organism: Bacillus species M
Organism source: NEB 356

]zg 1Y ﬂ\“[]: Growth Temperature: 37 °

&)I)* Exhibits star activity
Enzyme gene cloned.
Enzyme gene sequenced.

Entered: Oct 3 1985 ... Modified: Jan 24 2000

Type IIs restriction enzyme

Related Records: Related References...
M.BsSpMIA M.BspMIB

Commercially Isoschizomers...
Available... (commercially available)

Restriction endonucleases are the quintessential pattern recognition molecules. They
bind strongly the specific conformation of DNA that is associated with a particular
DNA sequence. Even though the structural differences between DNA strands of
similar sequence is small, evolutionary pressure has resulted in enzymes that are
highly specific for their cognate sequence. An excellent site for endonuclease
information is Rebase: http://rebase.neb.com/

These patterns are examples of patterns that may be slightly variable in practice,
since the cleavage properties of the restriction endonuclease are determined by the
free energy of the complex, and different nucleotides may be admissible with reduced
catalytic rate — but in practice the enzymes are so discriminatory that a
dtereministic pattern matching approach describes the biologically relevant patterns
well enough.

10



BIOLOGICAL PATTERN EXAMPLES

CON- glycosylation

Modification™ « Phosphorylation
- J o Myristoylation

« Signal sequence
processing

f .
Location « Signal sequences
| and location
L ), . Dbatterns
—~_|

/ \

4 T

« amphiphilic
moment
Structure « order/disorder
e 2° structure

Protein

J

(. binding sites
Function o family specific
profiles

o e
\ J

* For post translational modification sites, specific residues are required, but structural
context usually determines whether any particular site will be modified or not.

A wide variety of protein functions and properties are mediated by simple sequence
patterns.
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PROTEIN PATTERN SEARCHING

Prosite
a0 PROSITE
@ [g http://prosite.expasy.org/cgi-bin/prosite/ScanView.cgi?scanfile=6172875 v C'] (”' prosite Q) [E]
TV INMSTVSTSUTI ISP SUIRINIORNIEN RS T I NUDHEUNDNE IRSDUR IERS TOR IR

IOVSLKTL‘VLKISSKDENGEAQT\DDV"ILSRLQEQNTKKLRKRLIRYKRLIKQKLIYRQTV’LL\
KLIEDETQATTNNTVEKDNNTLERLELAQELTMLQOLORKNKLSSLVKKFEDNAKIHKYRRIIREGT
EMNIEEVDSSLDVILQTLIANNNKNKGAEQIITISNANSHA

fiilee 1 100 200 300 400 500 600 700 800 900 1000 D

hits by profiles: [4 hits (by 3 distinct profiles) on 1 sequence]

W [ LLT_*Q . éT mrme ot

USERSEQ1 g (833 aa)
RrEErTs
PS51299 HTH_APSES APSES-type HTH DNA-binding domain profile :
5-111: score = 20.844
IYSARYSGVDVYEFIHS-~-~TGSIMKRKKDDWVNATEILKAANFAKAKRTRILEKEVLKE
THEKVQGGFGKYQGTWVPLNIAKQLAEKFSVYDQLKPLFDFTQTDGSASP
Predicted feature:
DNA_BIND 36 57 H-T-H motif (By similarity) [condition: none]
PS50088 ANK_REPEAT Ankyrin repeat profile :
394 - 426: score = 9.084
ELHTAFHWACSMGNLPIAEALYEAGTSIRSTNS
512 - 544: score = 10.900
NGDTALHIASKNGDVVFFNTLVKMGALTTISNK S

PS50297 ANK_REP_REGION Ankyrin repeat region circular profile :

The Prosite server (http://prosite.expasy.org) provides a tool that scans sequence for

biological patterns — domains, and post-translational modification sites. It also
supports scanning of user-defined patterns.

12



In probabilistic pattern matching, we ask for the
probability that a specific sequence is an instance of a
generalized pattern.

This is motivated by thermodynamics: there are no “impossible”
reactions, since that would imply infinite energy.

AG=—-RTInK

Since biomolecular interactions depend on the probabilities of
events — captured in the equilibrium constant K, probabilistic
descriptions describe biological reality better than deterministic
descriptions.

13



Sequences with a common property: annotated Gal4 binding sites

S000082749
S000082751
S000082754
S000082758
5000082759
S000083177
5000083295
S000083752
5000085008
5000085433
5000085638
S000085645

chr
chr
chr
chr
chr
chr
chr
chr
chr
chr
chr

chr

II
11
IT
II
II
Iv
Iv
VII
XIII
XIV
XV
XV

from:
from:
from:
from:
from:

from:

from

from:
from:
from:
from:

from:

275693
275780
278558
278577
278659
463133
:1016141
255426
171412
488265
550736
586480

to:
to:
to:
to:
to:
to:

to

to:
to:
to:
to:
to:

275729
275816
278594
278613
278695
463169
:1016177
255462
171448
488301
550772
586516

17bp "core region'

CTTCGGATCA
AATGAGCCTT
TATTGAAGTA
AGCCGCCGAG
AGATGTGCCT
ACCCCACGTT
AAAACTCGCA
TCGGGAAGCT
CTTCATTTAC
CTGGGCGCCG
GGCGAACAAT]
CCGGGTCGCC

CGGTCAACAGTTGTCCG
CGCTCAACAGTGCTCCG
CGGATTAGAAGCCGCCG
CGGGCGACAGCCCTCCG
ICGCGCCGCACTGCTCCG
CGGTCCACTGTGTGCCG
CGGACTCCATTTCCCCG
CGGAGTATATTGCACCG
CGGCGCACTCTCGCCCG
CGGAGTGCTCTTCGCCG
CGGGGCAGACTATTCCG
CGGACATCACCCGCCCG

AGCGCTTTTT
AAGTATAGCT
AGCGGGCGAC
ACGGAAGACT
AACAATAAAG
AACATGCTCC
GACCTTTTTC
ATCCGATTCT
AACGACCTCA
AGATAAATAT
GGGAAGAACA
GCACAGATGC

To generate this collection of sequences, the feature "Gal4-binding-site" was searched
in the SGD — Saccharomyces Genome Database; the actual sequences were retrieved
by specifying the genome coordinates in the appropriate search form of the database.
I have added ten bases upstream and downstream of the core binding region.

14



DEFINING PROBABILISTIC PATTERNS

Sequences with a common property: annotated Gal4 binding sites

17bp "core region”

S000082749 chr II from: 275693 to: 275729 CTTCGGATCACGGTCAACAGTTGTCCGAGCGCTTTTT
5000082751 chr II from: 275780 to: 275816 AATGAGCCTTICGCTCAACAGTGCTCCGAAGTATAGCT
S000082754 chr II from: 278558 to: 278594 TATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGAC

sC 3AAGACT
SC Multiple, non-identical instances of functional sequence fragments represent 3ATAAAG
(. . . . . ATGCTCC
information about the underlying biological process:
s¢ JTTTTTC
s( L . JGATTCT
How can we represent this information?
s( 3ACCTCA
YW Cé 7 Se ] v makine ir ences ¢ s p [ 7 3 ~a?
s¢ How can we use it for making inferences about an unknown sequence’ Barar

5000085638 chr XV from: 550736 to: 550772 GGCGAACAATICGGGGCAGACTATTCCGGGGAAGAACA
S000085645 chr XV from: 586480 to: 586516 CCGGGTCGCCCGGACATCACCCGCCCGGCACAGATGC

15



DEFINING PROBABILISTIC PA INS: SEQUENCE PROFILE AS CONSENSUS SEQUEN(

The “sequence profile” of Gal4 binding sites can be
represented by a consensus sequence.

S000082749 CTTCGGATCACGGTCAACAGTTGTCCGAGCGCTTTTT

S000082751 ATGAGCCTTCGCTCAACAGTGCTCCGAAGTATAGCT
S000082754 TATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGAC
S000082758 GCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACT
S000082759 GATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAG
S000083177 CCCCACGTTCGGTCCACTGTGTGCCGAACATGCTCC
S000083295 AAACTCGCACGGACTCCATTTCCCCGGACCTTTTTC

S000083752 TCGGGAAGCTCGGAGTATATTGCACCGATCCGATTCT
5000085008 CTTCATTTACCGGCGCACTCTCGCCCGAACGACCTCA
S000085433 CTGGGCGCCGCGGAGTGCTCTTCGCCGAGATAAATAT
S000085638 GGCGAACAATCGGGGCAGACTATTCCGGGGAAGAACA
S000085645 CCGGGTCGCCCGGACATCACCCGCCCGGCACAGATGC

Consensus ATGGACGCTCGGACCACACTGCTCCGAACGAGATCT

Pro:  The consensus sequence best represents the whole alignment.

Con: No information about how constrained a position is.

A consensus sequence simply lists the most frequent amino acid or nucleotide at each
position, or a random one if there is more than one with the highest frequency. The
consensus sequence is the one that you would chemically synthesize to make an
idealized representative of the set. It is likely to bind more tightly or to be more
stable than each of the individual sequences in the alignment.

16



S: SEQUENCE PROFILE AS DEGENERATE CONSENSUS SEQUEN(

The “sequence profile” of Gal4 binding sites can be
represented by a degenerate consensus sequence.

5000082749
S000082751
S000082754
S000082758
S000082759
S000083177
S000083295
S000083752
5000085008
S000085433
S000085638
S000085645

Consensus
Degenerate

CTTCGGATCACGGTCAACAGTTGTCCGAGCGCTTTTT
AATGAGCCTTCGCTCAACAGTGCTCCGAAGTATAGCT
TATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGAC
AGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACT

AGATG
ACCCC
AAAAC
TCGGG
CTTCA

GCCTCGCGCCGCACTGCTCCGAACAATAAAG
CGTTCGGTCCACTGTGTGCCGAACATGCTCC
CGCACGGACTCCATTTCCCCGGACCTTTTTC
AGCTCGGAGTATATTGCACCGATCCGATTCT
TTACCGGCGCACTCTCGCCCGAACGACCTCA

CTGGGCGCCGCGGAGTGCTCTTCGCCGAGATAAATAT
GGCGAACAATCGGGGCAGACTATTCCGGGGAAGAACA
CCGGGTCGCCCGGACATCACCCGCCCGGCACAGATGC
AATGGACGCTCGGACCACACTGCTCCGAACGAGATCT
AnTGGwCGCTCGGACrACACTsCTCCGAACGAKATCT

Pro: Better indication of ambiguity.

Con:  Refinements become increasingly arbitrary. Doesn't work for amino acids.

The degenerate consensus sequence uses ambiguity codes to capture variability and

type of variation better than a specific representative nucleotide could.

17



The “sequence profile” of Gal4 binding sites can be
represented by a “sequence logo”.

17bp "core region”

Pro:  Much better indication of conservation/propensity of characters.

Con: Small samples have artificially high information scores.

- 5 < - e - T ® I ‘
gy T NP TP e r® 2@ 22 IR EEE2ELNABEE8 EERIRBREHBIBRE,

A —

Sequence logo of Gal4 binding sites with 10 nucleotides flanking bases. Created with
WebLogo (http://weblogo.berkeley.edu/).

A Sequence Logo is a graphical representation of aligned sequences where at each
position the height of a column is proportional to the (Shannon) information of that
position and the relative size of each character is proportional to its frequency in the
column. Sequence Logos were pioneered by Tom Schneider who maintains an
informative Website about their use and theoretical foundations.

http://www.lech.nciferf.gov/~toms/sequencelogo.html

18



DEFINING PROBABILISTIC PATTERNS:

A Position Frequency
Matrix (PFM) —
sometimes also called
Sequence Profile —
records the number of
observations of every
character in every
position of a multiple
alignment.

e.g. TRANSFAC, for transcription factors

http://www.gene-regulation.com/

POSITION

FREQUENCY MATRIX

NN RRR R RE RS OO
NHO WU WNFO W

N
w

XX
BA

XX

M00049

F$GAL4 01

13.04.1995 (created); ewi.
16.10.1995 (updated); dbo.
Copyright (C), Biobase GmbH.
GAL4

GAL4

T00302 GAL4; Species: yeast, Saccharomyces cerevisiae.

-
=

WO ORHBNFUIONN BB WO OO RFWR

e
OO OOHORUIONNWHOOBWWHF oONNUIN

NNOOOONHHORBHNNF RO OH WU
=

COWOOONHFNONAONKHWHOHFOUIWNH

NIPFPOOAOHNOHZIQAPZZZOO0NZZZ

11 genomic binding sites from 6 genes

19



DEFINING PROBABILISTIC PATTERNS: POSITION SPECIFIC SCORING MATRIX

. ) ) Pos A c G T
A Position Specific Scoring
Matrix (PSSM) expresses O ol Sard) St ol
. 02 -5.92 -5.92 -1.13 -5.92
observed frequencies as a 03 _5.92 -2.88 <-1.31 -5.92
score, e.g. a log-odds score 04 -1.99 -3.53 -2.49 -2.49
for each observed 05 ->.92 -1.66-2.21 -3.53
: e 06 -2.49 -2.21 -3.53 -2.21
character, or an 07 -1.53 -3.53 -2.88 -3.53
information based score. 08 -5.92 -l.41 -2.88 -3.53
09 -1.41 -5.92 -5.92 -2.49
10 -3.53 -1.99 -2.21 -2.88
When a log-odds score is used, 11 -5.92 -2.88 -3.53 -1.41
the probability of observing a 12 -3.53 -2.21 -2.21 -2.49
sequence can simply be 13 -5.92 -1.66 -2.49 -2.88
leulated from the sum of 14 -3.53 -2.49 -2.49 -1.99
calculated from the sum o 15 -5.92 -1.13 -5.92 -5.92
scores (assuming independence of 16 -5.92 -1.13 -=5.92 -5.92
positions). 17 -5.92 -5.92 -1.13 -5.92

Pro:  Captures all information log(p) for match is simply the sum of weights.

Con: Not very readable. (Arbitrary) corrections have to be applied for unobserved states.

Since log(0) is not defined, we have to introduce an arbitrary correction for
unobserved characters. In this example I have added 0.1 to each character frequency
before calculating log odds.

20



Scanning a sequence ...

Experimentally annotated

Gal4 binding site: Sequence

YSGALL 03 CGGATTAGAAGCCGCCG

Y$GALL 04 CGGGTGACAGCCCTCCGA

Y$GALL 05 AGGAAGACTCTCCTCCG

Y$GALL 06 CGCGCCGCACTGCTCCGAACAAT

Consensus: GGNNNACWNTCSTCCGARS . .
“score’:

chrXII1:171415,171441 TACCGGCGCACTCTCGCCCGAACGA (4)

chrXIIL:171416,171442 TACCGGCGCACTCTCGCCCGAACGA (13)

chrXIL:171417,171443 TACCbGCGCACTCTCGCCCGAACGA (6)

But: at which score will we assume that a match is biologically meaningful ?

In this informal example, I have simply counted matches with the consensus
sequence (excluding "N"). We can slide the PSSM over the entire chromosome, and
calculate scores for each position. Only the middle sequence is an annotated binding
site. Whatever method we use for probabilistic pattern matching, we will always get
a score. It is then our problem to decide what the score means.

If the PSSM has been created like we mentioned above, the score can be interpreted
as a probability. Then we can apply a common level of significance to determine
whether a match should be considered better than random. At least in principle,
that’s what we would do. In practice, biological sequences are notorious for
violating assumptions about the independence of positions, upon which the
probability /significance argument is based.

21



Machine learning:
generalized representations of patterns

PSSMs are limited, especially to represent patterns that have
variable length gaps ...

“Machine Learning” has developed alternative ways to represent
high-dimensional information and to classify it. Examples are
Markov Models, Neural Networks, Support Vector Machines ...
and many more techniques

... but the principle of representing probabilities rather than
discrete events is similar.

22



Machine learning succeeds wherever flexible, general
patterns are needed for decision problems and cannot be
generated from first principles, and where training sets
exist.

"Data rich and theory-poor.’

Example applications
Signal peptide recognition
Gene finding
Splice sites, Exons and Introns
Protein domain boundaries

... however: machine learning will find correlations, not causalities. It cannot replace
your biological insight to distinguish a statistical anomaly from a biologically
meaningful result!

23



Machine Learning Strategy

BUILD

BUILD:

TS:

TRAIN:

QUERY:

CL:

Define an architecture
appropriate to the problem

Training set, containing true positives
(TP) and true negatives (TN)

Determine decision
parameters that optimally
discriminate TP /TN
Unclassified example

Analyze features of Q, apply
decision parameters, classify

(Classification) result

Machine learning methods must first be trained. Typically we use “supervised”
learning approaches for which we define examples of True Positives and True

Negatives, for the algorithm to generalize from.

“Unsupervised” approaches exist for special cases and potentially allow discovering
categories or populations in datasets. The result is commonly a classification

probability: the probability that query Q is a member of a category the algorithm

was trained on.

24



MARKOV PROCESS

In a first order Markov-process, a system moves through a sequence of
states, governed by the transition probabilities that are associated with its
current state. A Markov model depicts this in a graph of states (nodes)
and transitions (edges). Transitions are annotated by their probability.

Example: A Markov chain model for Toronto weather prediction. Note that this not only
models the number of rainy days, but also the length of rainy periods.

Estimate the ratio of rainy days to sunshine and the probability for two and three days of rain in a
row. How would you adjust the model for Vancouver weather (where it can rain for weeks)?

This first order Markov model depends only on the current state. Higher-order
models take increasing lengths of "history" into account, 7.e. how the system arrived
in its current state.

Note that the exit probabilities for a state always have to sum to 1.0. The so called
“stationary probability” over a long period of time for p(rain) is 0.32 - this is
determined by the combined effects of all individual transition probabilities. The
stationary probabilities for two- or three consecutive rainy days are 8.4% and 4.2%,
respectively. This is a very simple model, but it reflects approximately our experience
(the average actual number of rainy days in Toronto is 114 per year: 31%).

Here is a site with an online Markov Model simulator where you can play with
models and probabilities: http://markov.yoriz.co.uk/

25



MARKOV MODEL

A Markov Model is a stochastic generative model, i.e. a computational device that
generates sequences of events. Applied to biological sequences, the “event” is the
observation of a particular nucleotide or amino acid. The model has a number of states
S;, and each state has an emission probability matrix £, that defines the probablht)
with which S emits one character k from an alphabet of symbols, and a transition
probability matrix T); that defines the probability with which the process goes to state j
from state 1.

A simple Markov model that
generates "RAATTY" sequences.

Here, transition probabilities T

A" = [ " " o -
=05 p"AAATT"' =10 p =05 are always 1.0.

p'G"=05 p'T"=0.5

Markov models can be used as general descriptions of patterns.

Substrings, PSSMs and profiles can be seen as special cases of
Markov Models.

In a “Hidden Markov Model” (HMM), only the emitted symbols are visible, not the state
that emitted them, nor the transitions between the states.

26



HIDDEN MARKOV MODEL

Architecture of a general
Markov model for sequence patterns

This is the most general model to represent a
set of aligned sequences ( a profile). Each

arrow is a possible transition, with an
associated probability that depends on the
current state in the node it originates from.

s:  start

m: matching state - produce a character
according to a table of probabilities

d: delete state - skip a match

i:  insert state - output a new character
according to a table of probabilities

e: end

27



HIDDEN MARKOV

Build

Train

Use

MODEL

t

Construct architecture: number of states

Initialize with some transition probabilities and
emission probabilites according to desired global amino
acid composition

Examine all possible paths for generating each training
sequence

Count number of times a specific transition is used to
generate the corresponding sequence position

Update HMM with improved parameters

Repeat, until parameters are stable

Query the probability of an observed sequence to have

been generated by the parametrized HMM. If p is high:

the sequence shares characteristic features with the
training set: we may then ascribe some biological
significance to the similarity.

28



HMM advantages:

L.

Solid statistical
foundation

Efficient learning
algorithms, learning can
proceed from raw data
Unsupervised

Flexible

HMM limitations:

1. Large number of

unstructured
parameters

First order Markov
models do not capture
pairwise or higher order
correlations

29



Neural Networks:

Universal functions, constructed
from "neurons" that accept some
real-valued input signal I,
multiply input by some scaling
factor w, sum over all scaled
inputs, and produce a real-valued
output O, according to whether
the sum exceeds a threshold Q or
not given an “activation
function”.

Scaling factors and thresholds are
adjustable parameters. Neurons
can be connected into multi-
layered networks ...

[
[,
w.
\ W, ZW»/-
)~

Each “neuron” contains:

a set of inputs;

- an activation function;

- a threshold, also optimized during training.

In the sketch above, the activation function is linear, i.e. an “active” output depends

a set of weights, one for each input which are optimized during training;

on whether the weighted sum of inputs exceeds a hard threshold. Alternative
activition functions can implement “soft” thresholds, e.g. logistic functions.
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NEURAL NETWORKS
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NEURAL NETWORKS

Build

Train

Use

Construct architecture
Define an encoding of input data that maps a
property of the input into a real-valued functionf

Initialize neurons with random input weights and
thresholds

Run training set and compare classification results
Use back propagation (compensation of output
error) to update weights

Repeat until no further improvement is possible

Input observed sequence and record value of
output: above/below threshold?

fencoding can be iteratively optimized as well as weights and thresholds!
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Disorder

Signal peptides
Secondary structure
Transmembrane helices
Domains

Protein localization

Phosphorylation sites

Other examples: Cystine knots, Zn-finger ...
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SIGNAL SEQUENCES
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Example for recognition of sequence features with HMMs or NNs: common features
in gram-negative signal-peptide sequences are shown in a Sequence Logo.

Sequences were aligned on the signal-peptidase cleavage site. Their common features
include a positively charged N-terminus, a hydrophobic helical stretch and a small
residue that precedes the actual cleavage site.
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SIGNALP

Signal peptide detection is a successful application for both HMMs and NNs ...

EGFR_HUMAN - epidermal growth factor receptor precursor
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http://www.cbs.dtu.dk/services/SignalP /

Nielsen H, Engelbrecht J, Brunak S & von Heijne G (1997) Identification of prokaryotic
and eukaryotic signal peptides and prediction of their cleavage sites. Prot Eng 10:1-6

Two NNs: one for “signal sequence” (S-score), one for “cleavage site” (C-score).

Currently (V. 3.0) > 90% accurracy

SignalP is the premier Web server to detect signal sequences.
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