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The interpretation of phylogenetic trees involves assigning all branchpoints to
speciation or duplication events, and reconciling the inferred topology and
assignment with the (known) speciation tree of the organisms that are represented.

Definitions:

- orthologues arise through speciation;

- paralogues arise through duplicaion.

cf. Koonin EV. (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet. 39:309-338.

The literature distinguishes between in-paralogues (within one species) and out
paralogues (between species). However there is no distinct term for the RBM gene
(or BBH — Bidirectional Best Hit), one just assumes that RBMs are orthologues
although even in bacteria this is true in (only) about 95% of the cases.

cf. Wolf & Koonin (2012) A tight link between orthologs and bidirectional best hits in bacterial and
archaeal genomes. Genome Biol Evol. 4:1286-94.




Orthologues are derived from a single ancestral gene()
in the last common ancestor® of two species®).
(1) If two genes are derived from

paralogues, they are considered
paralogues even if the orthologues

0O

have been lost. (" pseudoorthologues") Speciation
(2) We consider the last common @ Duplication
ancestor, not some more ancient one. .

Species A

(3) Orthology is a property of pairs of

) Species B
genes, not multiples.

(NOT) Orthology is not (necessarily) O Function 1

a one-to-one relationship. A Function 2

(NOT) Orthology is not a transitive D Function 3

relationship, the equivalence relation ¢ and a are orthologues, a and b
of homology does not (necessarily) are orthologues, but b and ¢ are

hold true! NOT.

To analyze mixed gene trees, we evaluate each branch point and determine whether
it represents a speciation or a duplication event.

Speciation events give rise to orthologues, duplication events give rise to
paralogues.




Paralogues are genes within a species that are
descendants of one gene that has duplicated.

Note that both paralogues
duplicating AFTER speciation are
orthologues to a gene in another
species that has not duplicated.
These have been called Inparalogs
and they are collectively Co-
orthologous to a comparison gene
in a different species. However,
only one of these fulfills the
reciprocal best match criterion.

Speciation
@ Duplication

- Species A

Species B

Q Function 1
A Function 2
|:| Function 3

b and c are paralogues (inparalogs) and
they are co-orthologues to a. Only a
and ¢ will be RBM.




For orthologous
genes, the gene
tree should
recapitulate the
sequence of

speciation events.
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Reciprocal best match finds the respectively most similar genes in a genome. If
the acquisition of a new function involves a period of accelerated evolution,
duplicated genes that retain their function will be more similar to each other than
those that change.

Why does reciprocal best C
S c y ‘.? .

match find orthologues? Speciation -
@ Duplication -

Because we assume that after gene

(hlph(‘,dtloll. the two descendants B Species A -
evolve at different rates. One

o
. ios B Egl

paralogue will evolve at a faster rate Species B E
2L
from the ancestor than the other. -
Function 1 r
Reciprocal best match finds the A Function 2 -
respectively most similar genes in a . B
1 Y s € Function 3 -

genomne.




Why does reciprocal best match find

functionally most similar orthologues?

Speciation

We assume that the faster evolving .
S D
uplication

T T T T

of two paralogues undergoes neo-

I

- . ot B Species A
and /or subfunctionalization. peaies

Species B

O Function 1 -
A Function 2
D Function 3

Change
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Simply add up the vertical path lengths in this tree between all pairs across the
speciation node to show that RBM indeed finds the two genes with conserved
Function 1, and not the pairs with either of the novel Functions 2 or 3.




Organism A Protein 12

Organism C Protein 1

If you consider a single, orthologous gene, you should expect that the gene tree
recapitulates at least the topology of the cladogram, hopefully also the branch
lengths of the phylogram.




Sometimes we calculate phylogenetic trees from both orthologues and paralogues, to compile
all available information into the same framework. What do we expect?

If there is a gene duplication somewhere in the tree:

- we expect all descendants to inherit the duplicated gene

- we expect orthologues within the duplicated section of the tree to pattern

like the species tree.
Gene:
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The duplication point lies before the cenancestor of the included
species and after the cenancestor of included /excluded
species.

. Gene:
Species:

Fish

N
]
—0
| lm
e

Human

Gene-loss, lack of resolution of branching
points and HGT can complicate the
analysis.
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To analyse a mixed gene tree:

- we need a species tree for
reference

- we need to keep track of
species in the tree

- we need to keep track of
groups of orthologues

Gene:

[

£
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Assume we have the following mixed gene tree.

How did it evolve? What Speciations and
duplications led to this tree?

Species A
. Species B
Species B {]
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Always start from a reference model - the phylogram
(or at least cladogram) of species. Whatever else
happens over time, all variation is constrained by the
periods of joint or independent evolution that is due
to the sequence of speciation events, represented by
the branching topology of the tree.

Species A

. Species B

Species B
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Some gene evolves through the mists of time, part of
and passenger in— an organism that contains it.

Species A

. Species B
Species B

O Function 1
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A Speciation generates two orthologues that evolve
further by separately accumulating mutations.

Speciation

Species A

. Species B

Species B -O

O Function 1
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Further speciation events generate all OTUs .
Obviously we expect the phylogram of orthologues to
closely resemble the species tree.

Speciation C

Species A

. Species B

Species B

O Function 1
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Hoever, if there is a duplication event in the tree — in
this case before the speciation event we just
discussed, the story changes: a duplication event

generates a copy of a gene in one organism. Typically,

one of the copies may acquire a new function.

Species A

. Species B

Species B
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Consequently, after the duplication, nothing is
changed for one of the duplicates as the species
separate...

S | Speciation

Duplication

Species A

. Species B

Species B
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... while the other duplicate evolves according to the
same speciation pattern as its sibling (albeit, typically
with different rates). Every duplication creates a copy
of the branching pattern of the species tree.

Species A

. Species B

Species B
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The final tree can be decomposed into full or partial
copies of the species tree. In real life, uncertain
branching order and gene loss complicates the tree. But
we can always look for the best match to the model.

Speciation
Duplication

Species A

. Species B

Species B
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Note: the number of duplication nodes corresponds
exactly to the number of duplication events. The

number of speciation nodes is determined by the number

and size of branches that have been inserted.

Speciation
Duplication

Species A
. Species B

Species B
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To analyze a tree, you perform this process in
reverse!

Label all speciation and duplication events in
this tree. Define sets of most similar
orthologues and of paralogues.

Speciation
@

Species A —| :|
. Species B

Species B {]
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To analyze a tree, you perform this process in
reverse!

Label all speciation and duplication events in
this tree. Define sets of most similar
orthologues and of paralogues.

Species A
. Species B

Species B

iB

Most similar orthologues:

{1,2.3}, {4. 5}

Paralogues:

(2,4}, {3, 5, 6}
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Violations of the species tree may suggest
to re-evaluate the annotations as well as
the topology of the gene tree.
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Errors arise from:
Sampling (indels!)
HGT
Methodology

Long branch attraction

Probably not from convergence though.
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Long Branch Attraction is a pervasive problem of molecular
phylogenies.

Problem: highly divergent sequences may group together in a tree
regardless of their true relationship. This is due to the fact that the
number of states is limited, and widely divergent sequences will pick up
mutual similarities to the average distribution.

Symptom: unexpected grouping patterns and poor bootstrap values.
Try to remove, recalculate, re-insert. (The information contributed by a highly
diverged sequence to the tree is not very critical anyway.)

Cures: ML methods are a bit less sensitive. Correct for multiple
substitutions. Try to use slower-evolving traits. Best approach: add
intermediary OTU's sequences (always better to add information than
to massage the algorithm).

Even if you are interested only in a few members of a clade, it is good
to include as many OTUs as feasible for the tree building.

See also: http://en.wikipedia.org/wiki/Long branch_attraction (this article deserves
to be rewritten though, sounds a bit like a high-school project).

Recent paper: Kiick P, Mayer C, Wagele J-W, Misof B (2012) Long Branch Effects
Distort Maximum Likelihood Phylogenies in Simulations Despite Selection of the
Correct Model. PLoS ONE 7(5): €36593. do0i:10.1371 /journal.pone.0036593.




Interpreting
a mixed
gene tree
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A worked example from course data, displayed in the Jalview tree window.
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Gene tree
and
Species tree
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A worked example from course data, displayed in the Jalview tree window.
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A worked example from course data, displayed in the Jalview tree window.




KILA_ESCCO

If not all expected
members of a
clade are present,
either genes have
been lost, or the
genes under
question have been
misinserted
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Some
additional
speciations are
obvious ...
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... others are
less clear.
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Nodes can
either
correspond to
duplications or
speciations.

KILA_ESCCO

Speciation
nodes are
assigned
according to
the species that
are the OTUs
for a clade. All
species must be
accounted for.
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A worked example from course data, displayed in the Jalview tree window.
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Duplication nodes

insert copies of the
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except for HGT.
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A worked example from course data, displayed in the Jalview tree window.
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