```
A
Bioinformatics
Course
Analyzing Phylogenetic Trees
Boris Steipe
DEPARTMENT OF BIOCHEMISTRY - DEPARTMENT OF MOLECULAR GENETICS University of Toronto
```

Analyzing mixed gene trees

The interpretation of phylogenetic trees involves assigning all branchpoints to speciation or duplication events, and reconciling the inferred topology and assignment with the (known) speciation tree of the organisms that are represented.
Definitions:

- orthologues arise through speciation;
- paralogues arise through duplicaion.
cf. Koonin EV. (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet. 39:309-338.
The literature distinguishes between in-paralogues (within one species) and out paralogues (between species). However there is no distinct term for the RBM gene (or BBH - Bidirectional Best Hit), one just assumes that RBMs are orthologues although even in bacteria this is true in (only) about 95% of the cases.
cf. Wolf \& Koonin (2012) A tight link between orthologs and bidirectional best hits in bacterial and archaeal genomes. Genome Biol Evol. 4:1286-94.

Orthologues

Orthologues are derived from a single ancestral gene ${ }^{(1)}$ in the last common ancestor ${ }^{(2)}$ of two species ${ }^{(3)}$.

(1) If two genes are derived from paralogues, they are considered paralogues even if the orthologues have been lost. ('pseudoorthologues')
(2) We consider the last common ancestor, not some more ancient one.
(3) Orthology is a property of pairs of genes, not multiples.
(NOT) Orthology is not (necessarily) a one-to-one relationship.
(NOT) Orthology is not a transitive
 relationship, the equivalence relation of homology does not (necessarily) hold true!

To analyze mixed gene trees, we evaluate each branch point and determine whether it represents a speciation or a duplication event.
Speciation events give rise to orthologues, duplication events give rise to paralogues.

Paralogues

Paralogues are genes within a species that are descendants of one gene that has duplicated.

Note that both paralogues duplicating AFTER speciation are orthologues to a gene in another species that has not duplicated. These have been called Inparalogs and they are collectively Coorthologous to a comparison gene in a different species. However, only one of these fulfills the reciprocal best match criterion.

b and c are paralogues (inparalogs) and they are co-orthologues to a. Only a and c will be RBM.

Reciprocal Best Match (RBM)

Reciprocal best match finds the respectively most similar genes in a genome. If the acquisition of a new function involves a period of accelerated evolution, duplicated genes that retain their function will be more similar to each other than those that change.

Why does reciprocal best match find orthologues?

Because we assume that after gene duplication the two descendants evolve at different rates. One paralogue will evolve at a faster rate from the ancestor than the other.

Reciprocal best match finds the respectively most similar genes in a genome.

Why does reciprocal best match find functionally most similar orthologues?

We assume that the faster evolving of two paralogues undergoes neoand/or subfunctionalization.

Simply add up the vertical path lengths in this tree between all pairs across the speciation node to show that RBM indeed finds the two genes with conserved Function 1, and not the pairs with either of the novel Functions 2 or 3.

Gene Tree (Mixed)

Sometimes we calculate phylogenetic trees from both orthologues and paralogues, to compile all available information into the same framework. What do we expect?
If there is a gene duplication somewhere in the tree:

- we expect all descendants to inherit the duplicated gene
- we expect orthologues within the duplicated section of the tree to pattern like the species tree.

Species:

Gene:

Gene Tree (Mixed)

The duplication point lies before the cenancestor of the included species and after the cenancestor of included/excluded species.

Species:

Gene-loss, lack of resolution of branching points and HGT can complicate the
 analysis.

```
Gene Tree (Mixed)
```

To analyse a mixed gene tree:

- we need a species tree for reference
- we need to keep track of species in the tree
- we need to keep track of groups of orthologues

Gene Tree (Mixed)

Assume we have the following mixed gene tree.
How did it evolve? What Speciations and duplications led to this tree?


```
Gene Tree (Mixed)
```

Always start from a reference model - the phylogram (or at least cladogram) of species. Whatever else happens over time, all variation is constrained by the periods of joint or independent evolution that is due to the sequence of speciation events, represented by
 the branching topology of the tree.

Species ASpecies B
Species B

Gene Tree (Mixed)

Some gene evolves through the mists of time, part ofand passenger in- an organism that contains it.

Gene Tree (Mixed)

Further speciation events generate all OTUs . Obviously we expect the phylogram of orthologues to closely resemble the species tree.

\bigcirc Function 1

Gene Tree (Mixed)

Hoever, if there is a duplication event in the tree - in this case before the speciation event we just discussed, the story changes: a duplication event generates a copy of a gene in one organism. Typically, one of the copies may acquire a new function.

S	Speciation
D	Duplication

\square
Species A
\square
Species B
\square

Gene Tree (Mixed)

Consequently, after the duplication, nothing is changed for one of the duplicates as the species separate...

Species ASpecies B
Species B

\bigcirc Function 1
\checkmark Function 2

Gene Tree (Mixed)

... while the other duplicate evolves according to the same speciation pattern as its sibling (albeit, typically with different rates). Every duplication creates a copy of the branching pattern of the species tree.

S	Speciation
D	Duplication

\square	Species A
\square	Species B
\square	Species B
\square	

Gene Tree (Mixed)

The final tree can be decomposed into full or partial copies of the species tree. In real life, uncertain branching order and gene loss complicates the tree. But we can always look for the best match to the model.

S	Speciation
D	Duplication

Species A
Species B
Species BFunction 1
Function 2
\square Function 3

Gene Tree (Mixed)

Note: the number of duplication nodes corresponds exactly to the number of duplication events. The number of speciation nodes is determined by the number and size of branches that have been inserted.

Gene Tree (Mixed)

To analyze a tree, you perform this process in reverse!

Label all speciation and duplication events in this tree. Define sets of most similar orthologues and of paralogues.

S	Speciation
D	Duplication

\square	Species A
\square	Species B
\square	Species B

Gene Tree (Mixed)

To analyze a tree, you perform this process in reverse!

Label all speciation and duplication events in this tree. Define sets of most similar orthologues and of paralogues.

Species A
Species B
Species B

Function 1

Most similar orthologues:
$\{1,2,3\},\{4,5\}$
Paralogues:
$\{2,4\},\{3,5,6\}$

gene tree (mixed)

A selection of sequences (e.g. the result of a PSI-BLAST search contains orthologues and paralogues in the same tree. In order to interpret such a tree, we MUST distinguish between branch points that represent duplication events and branch points that represent speciation events.

Sources Of Error

Errors arise from:
Sampling (indels!)
HGT
Methodology
Long branch attraction

Probably not from convergence though.

Long Branch Attraction
Long Branch Attraction is a pervasive problem of molecular phylogenies.

Problem: highly divergent sequences may group together in a tree regardless of their true relationship. This is due to the fact that the number of states is limited, and widely divergent sequences will pick up mutual similarities to the average distribution.

Symptom: unexpected grouping patterns and poor bootstrap values. Try to remove, recalculate, re-insert. (The information contributed by a highly diverged sequence to the tree is not very critical anyway.)

Cures: ML methods are a bit less sensitive. Correct for multiple substitutions. Try to use slower-evolving traits. Best approach: add intermediary OTU's sequences (always better to add information than to massage the algorithm).

Even if you are interested only in a few members of a clade, it is good to include as many OTUs as feasible for the tree building.

See also: http://en.wikipedia.org/wiki/Long_branch_attraction (this article deserves to be rewritten though, sounds a bit like a high-school project).

Recent paper: Kück P, Mayer C, Wägele J-W, Misof B (2012) Long Branch Effects Distort Maximum Likelihood Phylogenies in Simulations Despite Selection of the Correct Model. PLoS ONE 7(5): e36593. doi:10.1371/journal.pone.0036593.

A worked example from course data, displayed in the Jalview tree window.

A worked example from course data, displayed in the Jalview tree window.

A worked example from course data, displayed in the Jalview tree window.

A worked example from course data, displayed in the Jalview tree window.

A worked example from course data, displayed in the Jalview tree window.

A worked example from course data, displayed in the Jalview tree window.

A worked example from course data, displayed in the Jalview tree window.

A worked example from course data, displayed in the Jalview tree window.

A worked example from course data, displayed in the Jalview tree window.
http://steipe.biochemistry.utoronto.ca/abc
B ORIS.STEIPE@UTORONTO.CA
DEPARTMENT OF BIOCHEMISTRY \& DEPARTMENT OF MOLECULAR GENETICS UNIVERSITY OF TORONTO, CANADA

