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To measure the quality of a sequence alignment, we need to define some way to 
quantify the similarity of two amino acids. Whether two amino acids contribute 
similar stability or function to a folded protein depends on their precise context. 

This Venn diagram (originally going back to Willie Taylor) provides a good first 
aproximation to summarize shared sidechain properties and to estimate amino acid 
similarity.  
Note that “C” appears twice in this sketch: once as cysteine (CSH) with its free thiol 
function, once as the disulfide bonded cystine (CS-S). These two forms have very 
different properties. 
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As an example consider which amino acids are “similar” to tyrosine. 
Which amino acid(s) we regard as being similar to tyrosine depends on which 
property we are considering. There are many properties that one can quantify, all of 
them imply a different set of “similar” amino acids, and no obvious strategy exists 
how to combine properties such as eg. hydrophobicity and volume into a single 
metric, as a similarity score for an amino acid pair.  
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A scoring matrix can be used to quantify how well a given model is represented in 
two aligned sequences. Here the model says: two amino acids are similar, if it is easy 
to change one codon into the other by single nucleotide substitutions. For very 
closely related sequences, this is actually not a bad metric. And it captures an 
intriguing property of the genetic code: being robust against mutations in the sense 
that the biophysical properties tend to be conserved between similar codons. 
 
Any biophysical property of amino amino acids can be turned into such a scoring 
matrix. However, whether amino acids are likely to be paired in a correct alignment 
of natural sequences is not well described by any single biophysical property, and 
there is no abvious way how to weight their combinations. 
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The Dayhoff model of evolution postulates a quantitative model of the likelihood of 
specific amino acid substitutions as a consequence of evolution, based on the 
empirical observation of variation in related protein sequences. This rejects a 
definition of amino acid similarity from first principles in favor of an empirical 
approach. 
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The model takes into account the observed changes in a set of closely related 
sequences for which all current and ancestral states can be inferred. It then 
normalizes the observed frequency of change with the overall likelihood of mutation, 
which is different for different amino acids – due to their unique properties as well as 
their unequal number of codons. This gives – for any observed change – the 
probability that the change has occurred in the sample of related sequences, i.e. as a 
consequence of evolution. 
We can also calculate the probability that a change has occurred due to random 
chance: this is simply governed by the frequency of the target amino acid. For 
example a random change from leucine to methionine (2.4% of database residues) is 
almost three times less likely than a change to glutamic acid ( 6.8% of database 
residues). 
Comparing the likelihood of an evolutionary change with the likelihood of a random 
change gives us the “odds” that the two sequences in which the change was observed 
are related. For example the mutation probability of Met to Glu is quite low since 
these amino acids have very different properties. 
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MDM78PAM250 is a frequently used mutation data matrix. It is the Margret 
Dayhoff Model of 1978, extrapolated to a Percent Accepted Mutation rate of 250. 
But the matrix as used in many alignment tools does not actually give the original 
numbers: it has been modified to score all identities the same (i.e. 1.5, which is IMO 
a big source of alignment problems), and it has been abbreviated to easily map to 
integers – both changes were done to speed up computation which was a big concern 
at the time these matrices were written. 
This approach has been superseded. 
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PAM 250 means: 250 accepted changes in the evolution of 100 amino acids of sequence: 
Percent Accepted Mutations. It expresses the evolutionary distance for which the matrix 
best describes the likelihood of relatedness. But how can the value of Percent Accepted 
Mutations be more than 100? 
Mutations are located randomly in the sequence, therefore some amino acids may be hit 
several times and others never at all. Moreover, once an amino acid is changed, it may still 
revert to its original state through a second mutation. It is easy to see that even with very, 
very many mutations it is virtually impossible to arrive at a sequence that is 100% different 
from the original sequence. 
As the graph inset shows, PAM250 corresponds to about sequence 20% identity.  
Extrapolation to large PAM distances has problems. For example, since Arg and Trp have 
similar codons (_GG), an R→W mutation is quite likely at the very close evolutionary 
distances of the proteins in the Dayhoff dataset. It is also quite likely that evolution will 
favor secondary mutations at that site, to introduce an amino acid that is biophysically more 
compatible, and theR→W becomes unlikely in more distantly related pairs. But in the 
Dayhoff model, where large evolutionary distances are extrapolated by repeatedly 
multiplying the matrix with itself, that discrepancy gets amplified and as a result the 
pairscore of R→W is almost as high as an identity. 
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To address the extrapolation problem, Steve Henikoff compiled matrices directly 
from blocks of ungapped alignments of sequences at given evolutionary distances, 
once a sufficient number of such sequences were available in the databases. These are 
the BLOSUM matrices. 
BLOSUM62 is a matrix compiled from sequences of not more than 62% identity. It 
corresponds approximately to a PAM160 matrix and appears to be the most sensitive 
choice to search for just barely detectably related sequence pairs. 
Use BLOSUM62 unless you have a well understood reason not to. 
 
Henikoff, S.; Henikoff, J.G. (1992). Amino Acid Substitution Matrices from Protein 
Blocks. PNAS 89:10915–10919. 
Eddy, S: (2004), Nat Biotechnol. 8:1035-1036 
See also: http://en.wikipedia.org/wiki/BLOSUM (Good article!) 
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Note that the R→W pairscore of BLOSUM62 is very much more in line with our 
biological intuition. 
The matrix has been scaled to integers, for ease of computation. Also, its overall 
expectation  value is negative, so we can't increase alignment scores by randomly 
adding pairs. This is important for local alignments. Finally, as we would expect, the 
score of residue identities depends on the nature of the residue: e.g. C, H, or W 
identities are (and should be) more significant than A or L. 
To repeat: 
A scoring matrix represents a model of amino acid relatedness. 
PAM Matrices measure the likelihood that one amino acid could have been selected 
by evolution as an acceptable change in closely related sequences. 
BLOSUM matrices measure the likelihood that one amino acid could appear in the 
same position as another in ungapped regions of two distantly related sequences. 
That is not exactly the same. 
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