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proving homology

How do we prove homology 7

If the alignment of two sequences scores so highly under a
particular model of evolution from a common ancestor that a
random chance similarity is sufficiently improbable, we may
assume the sequences to be homologous.

How do we measure compatibility with a model of
evolution 7

Use a Scoring Matrix that quantifies relatedness under a
model of evolutionary relatedness. Then score the correct
alignment.

What is the "correct" alignment ?

That is an alignment that pairs up those and only those
residues that are descended by evolution from a common
ancestor.

Motivating the need for optimal sequence alignments ...




inferring homology

How do we generate the "correct" alignment ?

We can't. We can never guarantee that a particular alignment is correct! There
is no possibility to know the ancestral sequence and the evolutionary sequence.
Even the sequencing of ancient DNA does not guarantee we are looking at the
actual progenitors.

What can we do ?

We can produce an optimal alignment. If the optimal alignment does
not support homology, then the correct alignment will not support
homology either. But: we cannot guarantee that this is the correct alignment.

(In fact we can define scenarios in which it will not be, since a one-to-one
relationship between residues may not be meaningful in distantly related
sequences. )




inferring homology

In the absence of observation, the correct alignment remains unknown.

However: ...

If we produce the best possible alignment
and we cannot infer homology from that, the
"correct " alignment would not convince us
either.

.. and the best possible alignment can be constructed.

Note that this actually combines two objectives of optimal sequence alignments:
(i) use the score of the alignment o infer homology;

(ii) use the alignment itself to study contraints on structure and function.




to summarize the previous...

Sequence similarity can be measured as the sum of
amino acid pairscores in an alignment.

Pairscores can be tabulated in a matrix.

The matrix defines what we mean by similarity
when we apply it to amino acid pairs.

If the matrix represents our expectations about
exchange likelihood in a model of evolution, the
stmilarity measure it generates correlates with the
likelihood that two sequences are homologous.




Once we can prove homology, we can
infer shared properties between
genes.




homology & alignment

How can we prove homology 7

If the alignment of two sequences is so indicative of a
particular model of evolution that a random chance
similarity is sufficiently improbable, we may assume
homology of the sequences as the most plausible

explanation.




homology & alignment

How can we measure compatibility with
a particular model of evolution 7

Create the correct alignment. Then use a Scoring Matrix that

quantifies similarity of all aligned pairs of amino acids under a
particular model of evolutionary relatedness. Sum over all
pair-scores.




homology & alignment

How can we measure compatibility with
a particular model of evolution 7

Create the correct alignment. |...]

What is the correct alignment 7

That is an alignment that pairs up those-and only those-
residues that are the result of divergent evolution from a
common ancestor. For this alignment the sum of pair-scores is
a measure how compatible the similarities and differences
between amino acids in the aligned pairs are with that model
of how an ancestral sequence could have evolved into the
present day sequences.




correct alignment

How can we generate the correct alignment ?

We can't.

We can never guarantee that a particular alignment is correct! There
is no possibility to know the ancestral sequence and the evolutionary

trajectory. Even sequencing ancient DNA does not
guarantee we are looking at the actual progenitors of
observed present-day sequences.

What can we do instead?

We can produce an optimal alignment. If the optimal alignment does
not support homology, then the correct alignment will not support
homology either. But: we cannot guarantee that this is the correct
alignment.
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correct alignment

In the absence of observation, the correct alignment remains unknown.

However: ...

If we produce the best possible alignment and
we cannot infer homology from that, the
correct alignment would not convince us

either.

... and the best possible alignment can be constructed.
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optimal alignment

How can the best possible alignment

be constructed ?

Can one generate all alignments, score them, and chose the best 7

... No. The existence of indels makes it intractable to consider all possible
alignments.
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indels

Related sequences often have different lengths. Ends can be
lengthened and shortened, and internally, segments ranging from
single residues to entire domains can have

been inserted.

| |

1E17 PYFKD-KGDSNSSAGWKNSIRHNL
1KQ8 PFFRGSY----- TG-WRNSVRHNL
| |

In general, an insertion from the
point of view of one sequence is the

same as a deletion from the point of

view of the other sequence, thus we

often use the term "indel".

Note that the term insertion or deletion refers only to the sequences, not to the
actual molecular event!
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indels

Match

Insertion

l l?eletion
1E17 PYFKD-KGDSNSSAGWKNSIRHNL
1KQO8 BFFRGS --TG-WRNSVRHNL

Since every position of the alignment can
represent one of three states, the number
of different alignments is on the order

of (3lensth)—greater than the number of
particles in the universe for the length of
typical protein sequences.

This is an intractable problem.

Number of particles in the universe: on the order of 103!

Alignments for two sequences of length 200: ~3200 = 10%.
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indels

But: if we assume that
the global score is simply

a sum of pair-scores, we

1E17
1KQ8

can devise an effective
divide-and-conquer

approach ...

Note: a pair-score does not depend on the context of the aligned pair of amino acids,
but only on the two amino acids themselves. Therefore it can be retrieved from a
similarity matrix.
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optimal alignment

Premise:
The total alignment score is the sum of all pair-scores

for characters, minus a penalty for each indel.

Pair scores depend only on the pair

of characters under consideration.

Since we determine a pair-score "locally" (without reference to its
neighbourhood, or other context), simply by looking it up in a scoring matriz,
we can subdivide the big problem of global alignment into many little

problems that are easier to solve.

The premise of context independence makes finding an optimal alignment a solvable
problem. It is can be shown that alignment problems that are not context-
independent are NP hard, i.e. no algorithm exists that solves such a problem in a
number of steps that is proportional to some polynomial of the alignment length.
Rather, the number of steps in fully context-sensitive, gapped alignment must be
proportional to some number to the power of the alignment length.

You can visualize this by considering that context sensitive really means: each local
decision (whether to match two characters or insert an indel) is influenced by the
state of all characters already in the alignment: all combinations of states are
therefore distinct and must be considered separately. This is exactly the procedure
which we have considered previously as the brute-force approacht o constructing
alignments — and found to be intractable.
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optimal alignment

The highest possible score of an alignment is the (highest
possible score of an alignment that is one residue
shorter), extended in the best possible way by one residue ...

... the highest possible score of an alignment that is one residue shorter is the

(highest possible score of an alignment that is two residues shorter),

extended in the best possible way by one residue ....

... the highest possible score of an alignment that contains
only a single pair of residues can be looked up in the scoring
matrix.
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optimal alignment

One can think of these types of algorithms as

recursive functions.

re.curse Iri'kers
(see RECURSE)

This dronic (!) definition actually defines an infinite recursion - the rule is applied
forever.
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optimal alignment

re.curse Irikers
(unless obvious, see RECURSE)

Example:

Computing a factorial

function factorial(n)
if (n < 0) return error;
if (n == 0) return(l); Base Case

else return(n * factorial(n-1));

Real applications of recursive strategies or algorithms always require a so called
Base Case: a situation where the recursion stops and a definite result is generated.
More about this at Wikipedia: (http://en.wikipedia.org/wiki/Recursion_ (computer _science)).
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optimal alignment

Recursive definition of alignment score in optimal alignment:

Global score for all positions up to and including 7, j

Pairscore at position i, j
Best score prior to position i, j
N
r N
/
Sit#1 o1
—
S; = 8; + max < max S, ;- w(z-1)
or
max S,y ;, - w(y-1)

2<y<j
With: =7
th

.. . . Gap penalty
I, j the M resp j™ position of the alignment *aP :
function

x, y the length of an indel immediately preceding 1, j

Optimal alignment, in the way we have defined the procedure a few slides ago, is simple to
write as a recursion. However, implementing the approach as a recursion is very(!) inefficient
since it requires looking up many values over and over again. For example if we are to
calculate the score for i=9, j=10, we need to consider as one one of the possible extensions
the cell i=8, j=9 and x=4 i.e. we need to calculate sg 4q,-w,; = s,¢-W;. But this is the same
value for s we previously had to calculate for the adjacent cell column: i=7, j=9, x=3:
S7.50.1-Ws.1 = S, Wy, only with a different w. It is not the w-values that are costly to
calculate however, but the s-values themselves, since we need to recurse all the way to the
Base Case each time we want to calculate one. So while it is compact to write the alignment
in the way given above, in practice we store each intermediate result that is going to be
reused. This technique of storing useful intermediate results is called Memoization (not
memo r ization) in computer science.

(cf. http://en.wikipedia.org/wiki/Memoization)

The actual algorithm therefore uses a compact and intuitive way to model the problem: store
intermediate values in a matrix where rows and columns correspond to characters in the
respective sequences. The highest score in the matrix is the optimal score and the cells that
contribute to that score define the optimal alignment.
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path matrix
ABCD
A BCD AB-CD E AB--CD
A BCD - BDCD - -
possible
ABCD ABC---D
ABCD ABCD e |
F === FGD
A B \ g - - --ABCD
. \
B D \\ possible EFG---D
C i C ABCD
E |
D D o ] -AB £-D-
C
F E--CC -F
not allowed (duplication)
Any alignment can be Stretches of ungapped aligned
ABCD
represented as a path characters are diagonally A
A B D
. . c
through a matrix that connected. Indels skip over rows B \ X \
D ACBD
connects each intersection or columns. Paths that terminate . .
not allowed (inversion)
of row and column for two away from the first or last cell
aligned characters. represent end-gaps.

An alignment can be represented as a path through a matrix that has a row resp.
column for every letter of the two sequences to be aligned. Any alignment can be
represented as a path in such a matrix. Only a subset of arrangements correspond to
legal paths that represent our normal definition of an alignment.

Note that — especially in genome/genome comparisons — duplications and inversions
are common and specialized algorithms are available to perform such alignments (e.g.
Shuffle-LAGAN (http://lagan.stanford.edu/ )).
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algorithm

Needleman & Wunsch (1970):
the optimal alignment is given by the path that leads to

the highest possible sum of all the pair-scores it contains.

First step: compile all pairwise scores into a matrix.

A BCD
Blo|l|ofo
Diojo|o|l
Clofo|l]|o
Dio|o|o|1

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)

The first step of the Needleman-Wunsch algorithm for global, optimal sequence

alignment. This algorithmic strategy is frequently referred to as Dynamic
Programming.

 http://en.wikipedia.org/wiki/Dynamic_ programming
« http://en.wikipedia.org/wiki/Needleman-Wunsch__algorithm
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algorithm

Second step: The highest score in the last column and row is the is
highest pairscore we put there from the scoring matrix. This is the Base
Case, if we think about the recursion, because there is no previous score

we had to consider.

A BZC
oll1|o
0/0]|0
o/o|]l
0/0]|0

= (o |I=|e O

O Qo w

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)

The next scores we need to calculate are the cells in the previous column or row...
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algorithm

Third step: Extend the path. Assign to each cell of the next column and
row the highest value we can get by adding to its current value a value

from a previous cell that could be part of an alignment path.

A BCD A BCD
B|lo|l|o:0 Blo/1l|1l o
D oouo;\l D|ojo|l|1
C |o. 0,10 cCl11 20
D ooaj;fT D|ojo|o]|]

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)
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algorithm

Repeat: (Assign to each cell of the next column and row the highest value we
can get by adding to its current value a value from a previous cell that

could be part of an alignment path.)

A BCD A BCD A BCD
Blo|l|o]o Bo}»\lo Blo|3|1|o0
Dlojojo|l| D|alell|1l] D |2[2]1]0
Clojojllo| C|1|1]2]0]| C[1[1]2 0
D|iojofof]l Dio|o|o|]l D o|o|o]|]1

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)
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algorithm

Final step: The highest possible score for the alignment path matrix is

found after the matrix is filled.

Once the highest possible score has been determined, we only need to find
the cells that have contributed to this score. The optimal alignment is

given by the path that contains these cells. The cells are simply retrieved by

backtracking.

A BCD A BCD A BCD A BCD
Blo|ll|ojo|] Blo|1|1|o| B |o|3|1|o| B|2[3|1|0
D|ojo|lo|l] Dlofo/1/1] D 2(2|1/1 D |2|2/1]|1
Clojo|l|o Cll1/1/2/0/] C 1/1/2/ 0] C 1/1(2 0
Diolo|o|l Diojo|o|l|] D|o|o|lo[dl| D|o|o|o|d

AB-CD
_iodd

(This example assumes: identity matrix - match=1, mismatch=0, no gap penalties)
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indels

In reality, related sequences often have different lengths. Ends can be
lengthened and shortened, and segments ranging from single residues to
entire domains can have been inserted or deleted. We need to take into
account that indels are possible, but infrequent in evo-

lution.

1E17 YAELISQAIESAPEK-RLTLAQIYEWMVRTVPYFKD-KGDSNSSAGWKNSIRHNLSLHSKEIK
1KQ8 YIALITMAIR-DSAGGRLTLAEINEYLMGKFPFFRGSY-----— TG-WRNSVRHNLSLN-DCF' @ RDPSR NGKDNYWMLN-P—-—-—
B - - b

Empirically:
Insertion/deletion events are rare, and longer

gaps are less frequent than shorter ones.

... unfortunately, we have no quantitative, mechanistic model for these events.
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modeling indels

Commonly, a gap penalty is calculated from a constant value for
opening the gap (to reflect the rarity of the event) and an
increment for every extension (to reflect the fact that longer

gaps are less frequent than shorter ones).
w(l)=a + bl

This type of gap penalty is called an affine gap model.

It does not reflect exactly what we actually observe in biology.
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scoring indels

Database analysis shows that gaps are log-distributed.

An attempt to model this
situation has proposed a sum of

exponentials ...

P(n) = A"

... but other studies have not

shown a clear advantage of

logarithmic over affine gap T T T T T T T 1

penalties. 0 50 100 150 200
n
Qian & Goldstein (2001) Fig. 1. Log plot and log-log plot of observed structure-based gap

length distribution, compared with a quadruple-exponential fit (Eq. 8).
Proteins B:102-104 9 P q P P (Ea. 8)

Qian and Goldstein (2001)! have shown that a log linear plot of gap probabilities in
aligned sequences can be modeled by a sum of four exponential functions. This can
be interpreted to mean that several molecular mechanisms could exist for the
generation of indels, each with a distinct and characteristic probability of occurrence.

However, logarithmic gap penalties do not improve alignments (Cartwright, 2006)*
Recent developments focus on the inclusion of additional knowledge about the
sequences, such as secondary-structure specific gap penalties, or using sequence
profiles or multiple alignments, rather than aiming to further improve the gap
parameters. The bottom line is: we have no good model for indels, but we have no
significantly better model than the simple affine model.

Uhttp://www.ncbi.nlm.nih.gov/pubmed /11536366
2 http://www.ncbi.nlm.nih.gov/pubmed /17147805
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indels

Calculating affine gap penalties is
computationally simple:

reduce the score that is added to a
cell according to the number of
rows or columns that need to be
skipped.

11

Example parameters:
Gap insertion: -3
Gap extension: -1

Insert a gap,
extend by two: add score — 3 — 2

Insert a gap,
extend by one: add score — 3 — 1

Insert a gap: add score — 3

Ungapped continuation: add score to cell
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algorithm properties

Pairwise Optimal alignment

Reasonably fast for pairwise gene comparisons.

Too slow / needs too much memory for
database scans or whole genome alignments.

Guaranteed to always give a mathematically optimal
alignment.

Alignment not guaranteed to be biologically correct
or unique.

Alignment will depend on scoring matrix.

Alignment will strongly depend on (empirical !) gap
insertion and extension parameters.
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local and global ...

Often the score for an alignment between two substrings can be
larger than the score for an alignment between two entire

sequences. This is especially the case if a sequence has several

domains.
2 The Smith-Waterman variation of the
- e o - Needleman-Wunsch algorithm
computes the highest scoring
. ———m— aligned substrings.

ROCL

—= Always use local alignment -
N (e
m— - when the sequences have very
e o .
different lengths
i - when the sequences are only related

Q-'i
i
in domains or subdomains

—
CO61100

In the example above, the ankyrin domain repeats of the yeast transcription factor
Mbp1 are shown as a red box in this graphic of domains in sequence families,
compiled in the CDART database!. This domain is found in many other proteins,
but some of them do not share the other sequence elements found in Mbpl - they are
only partially related. Attempting a global sequence alignment with such sequences
would attempt to align sequences that are actually not homologous, leading to
inappropriately low scores and the danger of spurios results.

Temple Smith and Michael Waterman? have slightly modified the Needleman-
Wunsch algorithm, 11 years after its publication, to find the highest scoring local
alignment: this is the highest match in the matrix, tracked back to the point where
the pathscore drops below zero. The rest of the algorithm works in exactly the same
way. There is only one detail that needs to be considered: the substitution matrix
must yield a negative expectation value for random alignments. If this were not the
case, random pairs could extend the locally high-scoring alignment unreasonably.

Uhttp://www.ncbi.nlm.nih.gov/pubmed/12368255
2 http://en.wikipedia.org/wiki/Smith Waterman_ algorithm
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local and global ...

"True" alignment [—

Mbpl: 391 IDPELHTAFHWACSMGNLPIAEALYEAGTSIRSTNSQGQTPLMRSSLFHNSYTRRTFPRI 450
based on match to cd00204: 3 RDEDGRTPLHLAASNGHLEVVKLLLENGADVNAKDNDGRTPLHLAAKNGH---———- LEI 55
profile Swid: 517 IDDQGHTPLHWATAMANIPLIKMLITLNANALQCNKLGFNCITKSIFYNNCYKENAFDEI 576

200 400 600 &00 1000 1093

1—-'-l- | N | S E—

Swid =3 || ANK

1 100 200 300 400 500 600 700

— ! 833

Swid
Mbp1 F’ -

Local alignment™*
finds only APSES
lomain *(EBLOSUM®62; open=12, extend=4)
doma
450

Mbpl: 391 IDPELHTAFHWACSMGNLPIAEALYEAGTSIRSTNSQGQOTPLMRSSLFHNSYTRRTFPRI

o iF N .
Global alignment T N P N T S ) T P [ PP P I D

fhadls fu o e al Swi4: 517 IDDQGHTPLHWATAMANIPLIKMLITLNANALQCNKLGFNCITKSIFYNNCYKENAFDEI 576

too.

In this example, Smith-Waterman local sequence alignment detects only the high-
scoring similarity between Mbpl and Swids APSES domains. The lower scoring,
more highly diverged ankyrin repeats are missed by the algorithm. The Needleman-
Wunsch alignment finds both sets of sequences, albeit there are segments in between
that don't align well at all.

In this case, one could do a local alignment, remove the matching segments from the
input sequences and then redo the alignment to see if any other significantly similar
segments are found.
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sequence comparison

When to use ...

No alignment ...

Annotations of functional elements or domains may be conserved
(e.g. TM-helices, phosphorylation sites, 2° structure, disordered
segments ...). Especially significant if sequence divergence is
otherwise large.

Local alignment ...

Alignment in parts. Appropriate if sequences are homologous only
in part, or if parts of the sequence are structurally dissimilar, or if
inserted domains would create unrealistically large gap penalties.
May need to be iterated.

Global alignment ...

Appropriate if sequences are homologous over their whole length,
especially to bridge segments of high divergence, and to discover
islands of high similarity.
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empirical rules
What to do ...

Rule 1: Only align sequence that is homologous

Always align domains (if known) separately.

Rule 2: Only align sequence that is conserved.

Always align translated amino acid sequence—never
nucleotide sequence—unless you are studying nucleotide

variation.

Don't waste your time aligning gapped regions !

Of course the algorithms will optimally align anything you feed them, but for anything but homologous
sequence the alignment will be meaningless. Aligning non-homologous sequences 1s a nice example
of cargo-cult bioinformatics.

Therefore: if you already know that your proteins are multi-domain, separate out the domains before
aligning. If you don't know, critically look at the results, generate a hypothesis about the domain
structure and rerun your alignment on the domains separately. The exception, of course: is if you know
(or believe) your two proteins comprise homologous domains in the same order.

Amino acid sequences are much more highly conserved then genomic sequence and even if you have

nucleotide sequences to start from, you should always translate them before aligning. In general, many
more matches are required to make nucleotide sequence matches significant, since the alphabet is much
smaller. Also, there is no good notion of "similarity" or "conservative mutation" at the nucleotide levell.

The only reasons to align nucleotides are:

« if you are actually interested in the number and type of nucleotide exchanges, such as in gene
assembly and EST clustering, studies of SNPs, in comparative genomics, phylogenetic studies of closely
related genes, or defining primer binding sites;

« if you are aligning untranslated sequences; in particular if it is the nucleotide sequence itself that is

conserved, such as in DNA binding sites or splice sites; or if you are studying RNA genes, such as
tRNA or rRNA.

A corollary is that you should not try to align sequences in highly gapped regions. These residues have
evolved in a non-comparable context, they cannot have been conserved by evolution for that reason and
applying our scoring matrices cannot compare such residues in a meaningful way.

I However, transitions (conserving pyrimidines or purines) are more frequent than transversions. See http://
en.wikipedia.org/wiki/Models_of DNA_ evolution for how this is modelled.
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parameters

How to set penalties ...

Higher opening penalties make gaps less frequent.
Higher extension penalties make gaps shorter.
The effect of the penalties depends on the scoring matrix!

Typical opening penalty: 2-3 times an identity score.

Typical extension penalty: ! / s to ! / 10 of an opening penalty.

Default penalties for BLOSUMG62: -11 and -1 at NCBI (BLAST)
-10 and -0.5 at EMBOSS (Needle, Water)

36



alignment quality

How to report results ...

The alignment score is a single number that measures
the quality of the alignment. Scores depend on:

- the matrix

- the gap insertion penalty

- the gap extension penalty

- the end-gap penalty

- the algorithm (local or global, optimal or heuristic)

Therefore, all these parameters need to be reported along with
the alignment (similarity) score, otherwise the number is
meaningless.

Alternatively: report % identity! This allows a certain degree of
comparison between alignments.

Note that reporting %-identity is an objective metric, but it still depends on the
exact alignment that has been produced and it does not capture the quality of gaps.




decision thresholds

How to interpret ...

No clear threshold exists for homology.
Homologous proteins can have as little as < 10% identity. (This is a problem).

Non-homologous proteins can have as much as > 50% identity
over stretches of their alignment. (This is also a problem).

Rules of Thumb:

More than 25% sequence identity over an entire domain (e >100
residues) almost always means homologous.

More than one indel per 20 residues
almost always means non-homologous.

A Rule of Thumb does not replace sound judgement! Corroborating evidence can come from shared annotated
function, conservation of conspicuous features (eg. C, H, W residues), multiple alignments ... Always examine
alignments carefully: what is conserved but would not need to be if the sequences were not homologues?
What is not conserved but would be expected to be if the sequences were homologues?

Identities of 20 to 25% are also called the "twilight zone' - in which homology is
likely but can't be confidently inferred from sequence similarity alone.

These thresholds are based on sequence similarity after optimal alignment.
Additional supporting evidence for homology can be contributed from:

simlar length;

similar functional sequence patterns (e.g. cys/his clusters);

similar number of transmembrane helices;

similar conservation patterns or conserved motifs;

similar amino acid frequencies or bias (eg. polyglutamine, polyproline);
similar patterns of disordered sequence;

similar structure;

similar function;

similar genomic context;

similar interactors;

similar subcellular localization;

]
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EMBOSS tools

Needle - for optimal global alignments

Water - for optimal local alignments

stretcher - for long sequences: half as fast as NW but only linear to the

shorter sequence in memory.

matcher - for long sequences: slower than SW, but only linear to the shorter

sequence in memory; also gives suboptimal matches.

supermatcher - rough results for very long sequences; heuristics, based on

word matches.
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Needle

Output of EMBOSS
package global sequence
alignment program Needle
with sequences for yeast

Swi4 and Mbpl.

(Default parameters).

The first ~200 amino acids
of the alignment are
shown, these include the
conserved DNA binding

domain.

| - identical amino acids

- highly similar pairs

. - similar pairs.

3%

Aligned_sequences: 2
1: Mbpl

2: Swi4

Matrix: EBLOSUM62
Gap_penalty: 10.0
Extend_penalty: 0.5

Length: 1147
Identity: 266/1147 (23.2%)
Similarity: 414/1147 (36.1%)
Gaps: 368/1147 (32.1%)
Score: 640.0

EHH B HHHHHHSR

Mbp1l 1 MSNQ--IYSARYSGVDVYE-
Swid 1 MPFDVLISNQKDNTNHQNITPISKSVLLAPHé$éPViEILTiéETé&iéC
Mbp1l 18 FIH--STGSIMKRKKDDWVNATHILKAANFAKAKRTRILEKEVLKETHEK
suts 51 ncrmrioitailihibes b Ll L L L e L
Mbp1l 66 VOGGFGKYQGTWVPLNIAKQLAEKFSVYDQLKPLFDFTQTDGSASPPPAP
Swid 101 ééééYéRFéé%*ILLDSLLFLVNLYEII$é&&ﬁéi£é£éF$PNNPPPKRS
Mbp1l 116 KH-————— e HHASKVDRKKAIRSASTSAIMETKRNNKKAEEN
Swid 151 LNSILRKTSPGTKITSPSSYNLTPALLN SéSéLél--i4TAA$LLGKK$
Mbp1l 151 ———mmm QFQ---SSKILGNPTAAPRKRGRPVGSTRG
Gwis 198 ASTNOPNPSPLONLVFQTRONMGVNSSHNINN-— oo NDNETTARERND

17

50

65

100

115

150

150

197

177

242
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Water

Output of EMBOSS
package local sequence
alignment program Water
with sequences for yeast

Swi4 and Mbpl.

(Default parameters).

The first ~200 amino acids
of the alignment are
shown, these include the
conserved DNA binding

domain.

| - identical amino acids

- highly similar pairs

. - similar pairs.

Aligned_sequences: 2
1: Mbpl

2: Swid

Matrix: EBLOSUM62
Gap_penalty: 10.0
Extend_penalty: 0.5

Length: 1088
Identity:
Similarity:
Gaps:
Score:

263/1088 (24.2%)
411/1088 (37.8%)
317/1088 (29.1%)
644.5

HHRRHRHF BRI R

Mbpl 8 ARYSGVDVYE-FIH--STGSIMKRKKDDWVNATHILKAANFAKAKRTRIL
Lo llea LI s fe ol ees fe el Iz e ee e [l e ]l T2 ] ]

Swi4 40 ATYSETDVYECYIRGFETKIVMRRTKDDWINITQVFKIAQFSKTKRTKIL

Mbpl 55 EKEVLKETHEKVQGGFGKYQGTWVPLNIAKQLAEKFSVYDQLKPLFDFTQ
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Swid 232 DNHTTMNFNNDTRHNLINNISNNSNQSTIIQOQKSIHENSF---——- NN
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